
Secure communication in IP-based
wireless sensor networks via a trusted gateway

Floris Van den Abeele, Tom Vandewinckele, Jeroen Hoebeke, Ingrid Moerman, Piet Demeester
Department of Information Technology, Ghent University – iMinds

Gaston Crommenlaan 8/201 B-9050 Ghent, Belgium
{fvdabeele,jhoebeke,imoerman,pietdm}@intec.ugent.be

Abstract—As the IP-integration of wireless sensor networks
enables end-to-end interactions, solutions to appropriately secure
these interactions with hosts on the Internet are necessary. At
the same time, burdening wireless sensors with heavy security
protocols should be avoided. While Datagram TLS (DTLS) strikes
a good balance between these requirements, it entails a high
cost for setting up communication sessions. Furthermore, not all
types of communication have the same security requirements: e.g.
some interactions might only require authorization and do not
need confidentiality. In this paper we propose and evaluate an
approach that relies on a trusted gateway to mitigate the high cost
of the DTLS handshake in the WSN and to provide the flexibility
necessary to support a variety of security requirements. The
evaluation shows that our approach leads to considerable energy
savings and latency reduction when compared to a standard
DTLS use case, while requiring no changes to the end hosts
themselves.

Keywords—Wireless sensor networks, DTLS, IP, IoT, CoAP,
6LoWPAN, Gateway

I. INTRODUCTION

Deploying the Internet Protocol inside WSNs has been
technologically feasible for some years (e.g. via ZigBee IP
and 6LoWPAN). Today however, vendors might deploy IP
inside their WSN but the IP network itself is often unaccessible
to the public Internet. Instead, vendors rely on their own
platforms to manage all communications from and to their
WSNs. While this gives vendors a large amount of control
over their products, it also means that third party developers
experience difficulties reusing existing sensors in new services.
They are often left to integrating with vague and volatile cloud-
based APIs that differ from vendor to vendor. This situation
is commonly referred to as the “Intranet of Things” [1].

In order to step away from these closed ecosystems, a
number of open issues for 6LoWPAN networks are identified
in [2]. More specifically, the paper mentions a number of
issues relating to security in 6LoWPAN WSNs. The work
presented here addresses these security-related issues for the
IETF low power and lossy network protocol stack [3]. In
these types of WSNs, security is provided by the end-to-end
transport layer protocol Datagram TLS [4]. DTLS provides
communications privacy for datagram protocols (such as the
Constrained Application Protocol) by enabling client/server
applications to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery. The
protocol is based on the Transport Layer Security (TLS) pro-
tocol and provides equivalent security garantees. For the low-
power and battery-operated devices commonly found in WSNs,

the large communication overhead of DTLS is problematic.
This is mainly due to the costly DTLS handshake. In the
next section we show that the communication overhead for a
single-hop network without any packet loss is an additional
11 messages spanning five extra round trips. These extra
messages can be attributed almost entirely to the complex
DTLS handshake. Thus, the main objective of this paper is
to overcome the cost of the DTLS handshake in the WSN.

Our contributions in this paper consist of proposing, im-
plementing and evaluating an approach that relies on a trusted
gateway for mitigating the overhead of the DTLS handshake
in IP-based WSNs. Furthermore, our trusted gateway concept
is able to solve a number of other practical issues related to
DTLS and WSNs, such as the poor scalability of PSK-based
cipher suites and the loss of application-layer processing at
the edge of WSNs that is inherent to end-to-end security. As
a result, we hope that our work can hasten vendors to adopt
the open IETF protocol stack in lieu of their closed platforms.

II. PROBLEM STATEMENT AND RESEARCH GOALS

To give an example of the overhead incurred in setting
up a DTLS session we take a look at the number of bytes
that are communicated for a typical CoAP transaction on top
of DTLS. For one CoAP request/response pair that would
measure 72/70 bytes respectively in plain-text, DTLS triggers
a message exchange of 1529 bytes spread over 13 packets
that require a minimum of 5 round-trip times for being
transferred. After the DTLS handshake has finished, DTLS
application data messages contain a 13 byte DTLS header plus
the encrypted payload (i.e. CoAP messages) that requires an
additional 16 bytes for storing the authentication tag and the
sequence counter for the used cipher suite. Thus, 1329 bytes
were exchanged for the DTLS handshake and the close notify
messages, while the two application data messages only took
200 bytes1.

Considering wireless communication is one of the biggest
energy consumers in WSNs, the cost of the handshake is
problematic for employing DTLS inside WSNs. Therefor, the
main research goal of this paper is to mitigate the cost of the
DTLS handshake in the WSN. Rather than inventing a new

1Note that in this case the DTLS client grouped multiple DTLS records
in one flight, whereas the server did not (mainly to avoid 6LoWPAN
fragmentation while sending). Furthermore, there was no packet loss and
the two close notify messages sent to close the session were counted as
part of the DTLS message exchange. These numbers were obtained for
’TLS PSK WITH AES 128 CCM 8’, which is a cipher suite suited for
constrained environments such as WSNs.



[TER1]

TER

ClientHello

ClientKeyExchange
ChangeCipherSpec

Finished
ChangeCipherSpec

Finished

CloseNotify
CloseNotify

ClientHello
With Cookie

Client
Trusted 
gateway

Sensor 
node

ClientHello

ServerHello
ServerKeyExchange

ServerHelloDone
ClientKeyExchange
ChangeCipherSpec

Finished
ChangeCipherSpec

Finished

Application Data

ClientHello
With Cookie

HelloVerifyRequest

Application Data

HelloVerifyRequest

ServerHello
ServerKeyExchange

ServerHelloDone

(IP:P)C (IP:P)SN (IP:P)SN(IP:P)GW

Figure 1. The trusted gateway sets up a DTLS session with the sensor node once (TER1) and will reuse this session for future DTLS clients (TER).

security protocol, our aim is to make no changes to the DTLS
protocol at all. A secondary research goal is to overcome the
scalability issue inherent to PSK cipher suites. While PSK
cipher suites allow for very compact key exchanges (only
the identity hints for the PSKs are exchanged), they are
problematic when secure communication with Internet hosts
is necessary as maintaining a PSK with every Internet host is
impossible. When combined these two goals should lead to a
solution that is readily deployable. As a result, WSNs are able
to profit from the benefits provided by DTLS without suffering
from its costly handshake mechanism.

III. TRUSTED GATEWAY FOR MITIGATING THE COST OF
DTLS HANDSHAKES

Considering the goals from the previous section, a number
of solutions are possible. However, when changes to the
endpoints’ DTLS protocol are out of the question most of
these solutions are no longer applicable. In the end, we have
chosen for a trusted gateway approach to mitigate the cost
of the handshake in the WSN. The gateway achieves this by
maintaining long-lived DTLS sessions with WSN nodes and
transparently terminating DTLS sessions with Internet hosts.

Figure 1 gives an overview of our termination approach.
Clients (IP:P)C initiate a DTLS session with the sensor node
using the actual IPv6 address of the sensor node (IP:P)SN. If
the gateway is configured to terminate sessions for the sensor
node, it will intercept the ClientHello message and respond
with a HelloVerifyRequest message using the sensor node’s
IPv6 address as a source address (IP:P)SN. If the handshake is
completed successfully, then the trusted gateway will either
setup a DTLS session with the sensor (TER1, so named
because it is the 1st DTLS session destined for the sensor that is

terminated by the gateway) or re-use an existing session (TER)
using its WSN transport address (IP:P)GW. Once there is an
active session between the gateway and sensor node, the client
and sensor node are able to communicate. When the client
closes its DTLS session (i.e the close notify message at the
bottom of figure 1), the gateway will keep the session with the
sensor node open for future re-use.

In our approach, the DTLS sessions with sensor nodes are
set up once by the gateway and are reused whenever another
client wishes to communicate with the sensor node via DTLS.
The gateway multiplexes requests from multiple clients over
the long-lived session that is maintained with the WSN node.
When responses arrive from the sensor node, the gateway
is also responsible for demultiplexing and making sure each
response reaches its intended destination. This intercepting and
terminating mode of operation is transparent to both Internet
hosts and WSN nodes, i.e. no changes to the DTLS and
application stack are necessary. From the point of view of
the WSN node, all DTLS traffic appears to originate from the
trusted gateway (IP:P)GW. In most cases this is not a problem,
however when the WSN node must know the transport address
of the client then the address should be transported inside
the DTLS payload (one suitable candidate could be a CoAP
option). From the point of view of the client, all DTLS traffic
appears to be originating from the WSN node (IP:P)SN as the
trusted gateway operates completely transparent.

One consequence of our termination approach is that it is
straightforward to employ different cipher suites for the client
and the sensor node. For example, pre-shared key (PSK) cipher
suites [5] are a good option for the sensor node’s suite as the
amount of keying material that has to be exchanged is low.
For the client’s cipher suite a more scalable option than PSK



suites is desirable as there are expected to be a large number
of clients. Cipher suites based on public key cryptography are
good candidates due to the better scalability offered by public
key infrastructure in comparison to PSKs.

Another consequence of terminating DTLS sessions is that
a gateway can employ a security policy. This policy can decide
whether certain requests should be passed over DTLS to the
sensor node or in plain text. Consider as an example the case
where DTLS is only used to secure the Internet leg of the
communication for non-critical communication. Figure 2 gives
an overview of the different envisioned scenarios.

Gateway

Internet WSN

Figure 2. Different DTLS termination policies are possible at the gateway.

The resulting trusted gateway is a powerful entity that
can perform (large amounts of) processing at the edge of the
WSN, both on the transport layer (i.e. DTLS) but also on
the application layer (thereby becoming an application proxy).
This can help alleviate the load on the sensor network, which
can increase its life span. Examples include access control and
caching performed at the gateway for CoAP resources hosted
by sensor nodes. In case of end-to-end security between client
and sensor node, the gateway can not provide these services
as it can not decipher the DTLS messages. Terminating the
DTLS session at the gateway, makes these additional services
and all their benefits possible. Another side effect is that
by reducing the amount of handshakes with the WSN node,
the total number of failed handshakes due to packet loss is
lowered [6].

The trusted gateway approach also has a number of down-
sides. Firstly, it introduces another party where all commu-
nication between Internet hosts and sensor nodes passes in
plain-text. Thus the risk of this party being compromised
should not be overlooked. Therefor, it should be properly
maintained, monitored and hardened against known attacks.
On the other hand, the gateway also shields the DTLS stack
on the WSN nodes from direct communication with Internet
hosts, thus their exposure to potential attacks is reduced. From
a management point of view, it might actually be more feasible
to harden a DTLS terminating gateway (which typically runs
on more accessible hardware) than an entire sensor network.

A second issue is that the gateway should be on the routing
path between the Internet host and the WSN node in order to
terminate the session. If the gateway is not on the routing path
then an extra mechanism is necessary to intercept the DTLS
traffic. A number of solutions are possible to solve this issue
and these are briefly discussed in the future work section.

A potential criticism is that gateway in effect breaks the
end-to-end relationship between the client and the sensor node.
While this is true, the arguments from the previous paragraphs
and the results in next section show that the benefits of doing
so significantly outweigh the costs as long as the gateway is not

compromised. In cases where the sensor node does not trust the
sensor gateway, a different machine that is trusted by the sensor
can be used as a trusted gateway (e.g. a reverse proxy running
outside the WSN, e.g. in the cloud). We also refer to modern
data centers where it is common practice to offload TLS
sessions to SSL load balancers for improved scalability [7].
Similar to our approach, the machine terminating the TLS
session differs from the machine responding to the HTTP
request.

IV. EVALUATION

In order to evaluate our termination approach we composed
a realistic application scenario and ran a number of simulations
for three different configurations of the gateway. In the first
configuration (E2E) the gateway is left unconfigured and just
acts as a normal Internet router. In this configuration the client
establishes DTLS sessions with the sensor nodes directly. In
the second configuration, TER1, the gateway is configured to
terminate the DTLS session and setup a new DTLS session
with the sensor node. This represents the case where the
gateway does not have an active session with the sensor node
and has to setup a new one. In the third scenario, TER, the
gateway is configured to terminate the DTLS session and reuse
an existing DTLS session with the sensor node inside the
WSN. This is considered to be the steady state in typical
operations, as a sensor node is expected to have an active
DTLS session with the gateway during most of its lifetime.
The E2E and TER configurations are shown in figure 2. The
application scenario is also executed in plain text between the
client and the sensor node. These results are labeled as PLT
and serve as a lower limit for what can be achieved.

4

3

1

2

5

67

8 9

Figure 3. WSN network topology: the 9 nodes are arranged in an X pattern.
The DTLS servers (6, 7, 8, 9) are 2 hops away from the border router (1).

The application scenario consists of executing three CoAP
requests in sequence, i.e. executing request i+1 blocks until
the response for request i is received. First, a discovery
step is performed by retrieving the discovery resource “.well-
known/core” from the sensor node. In our particular setup this
requires two requests/responses via CoAP’s block2 mechanism
as the resource is larger than the MTU inside the 802.15.4
WSN. Secondly, a sensor measurement is retrieved from a
“/s” resource. Finally, a request is sent to toggle an actuator
via the “/a” resource. The resulting scenario represents a dis-
cover/sense/actuate cycle that is commonly found in Wireless
Sensor Network use cases. Prior to every application scenario,



E2E TER1 TER PLT

20
00

40
00

60
00

80
00

To
ta

l T
T 

(m
s)

(a) Total transaction times (TTT)

E2E TER1 TER PLT

20
00

40
00

60
00

80
00

W
KC

 T
T 

(m
s)

(b) Transaction times up to the reception of .well-known/core (WKC
TT)

Figure 4. Transaction times for the three configurations of the gateway (E2E, TER1, TER) and the plain-text CoAP reference case (PLT)

the client sets up a DTLS session with the DTLS server in
question. After completing the scenario, the client closes the
DTLS session. In case of PLT, the DTLS session is obviously
not setup.

The simulated WSN consists of 9 RM090 motes, arranged
in a X pattern as shown in figure 3. In the middle of the X there
is a RPL border router that routes traffic to and from the WSN
and that is responsible for the RPL DODAG. Of the other 8
nodes, four act as an intermediary router for the last 4 nodes
that act as DTLS servers. Thus, there are four DTLS servers
that are 2 hops away from the border router. The simulation
was run in Cooja [8] on the RM090 hardware platform. RM090
motes contain a MSP430f5437 µC with 16 kB RAM and
256 kB ROM memory and a CC2520 802.15.4 radio, both
of which are simulated in software by mspsim. For the DTLS
servers inside the WSN we employed TinyDTLS configured to
accept the ’TLS PSK WITH AES 128 CCM 8’ cipher suite
with a PSK hint of 15 bytes. For all three configurations, we
ran the application scenario a hundred times per DTLS server.
Prior to starting our measurements, we waited 5 minutes to
allow the RPL DODAG to stabilize. All results were obtained
using the default CSMA MAC protocol and ContikiMAC RDC
protocol available in Contiki. The trusted gateway ran on a
standard x86 laptop with an Intel i5-2520M CPU and 8 GiB of
RAM and was implemented as part of our CoAP++ framework
in Click router [9]2.

Figure 4(a) shows the total transaction time (TTT) of set-
ting up the DTLS session, completing the application scenario
and closing the session. In the TER configuration, the DTLS
session with the sensor node is already available and can be
reused. As a result, the expensive DTLS handshake with the
sensor node can be avoided. In this case, the TTT is composed
of setting up a DTLS session between the client and the trusted
gateway, completing the application scenario and closing the
DTLS session between the client and the gateway. The figure

2An archive file with the raw data obtained from our experiments is
published at [10].

shows that our approach can reduce the median TTT by more
than half when compared to the E2E case. The lower TTT in
the TER1 scenario when compared to the E2E configuration,
is caused by the DTLS client closing the session with the
gateway as opposed to the sensor node as is the case in the
E2E configuration. Therefore the close notify message does
not traverse the WSN (as the trusted gateway will keep the
DTLS session with the WSN node open for future reuse).

E2E TER1 TER PLT

10
15

20
25

30

N
um

be
r o

f R
X 

an
d 

TX
 p

ac
ke

ts

Figure 5. Number of packets received and transmitted by sensor node

This result is confirmed by figure 4(b) which shows
the transaction time (TT) up to the reception of the .well-
known/core resource. For the TER configuration this time is
nearly equal to two times the host-to-host round trip time, as
the handshake with the gateway only takes 42 ms. Because
the WKC TT does not include the close notify messages, the
results for E2E and TER1 are similar. Figures 4(a) and 4(b)
also show that the median transaction times for the TER con-



figuration are close to the lower limit of the PLT reference case.
The observed difference is due to 6LoWPAN fragmentation of
the larger DTLS packets and the time penalty of performing
AES cryptography in software.

Figure 5 presents the sum of the number of packets that
were received and transmitted by the sensor node in the form
of box plots. The TER1 median is two packets smaller than
E2E (21 vs 23 packets), this confirms that the close notify
messages do not traverse the sensor network in the TER1 case.
Also note that the TER case sends two additional packets when
compared to the PLT case. This is because the combination
of DTLS headers with the large discovery responses triggers
6LoWPAN fragmentation. As a result the two blocks of the
discovery response are fragmented into four fragments.

In terms of energy usage, the results show that by reusing
existing DTLS sessions we can achieve a median energy saving
of 59.5%. In figure 6 the total energy usage of the sensor
node during the application scenario is shown as a box plot
on the right axis. The bar plot and its axis on the left shows
the median energy usage per energy usage category. The plot
shows that the relative energy savings are largest for the CPU
category. This is because the SHA hash calculations (that
are performed in software) during the handshake messages
in case of the ’TLS PSK WITH AES 128 CCM 8’ cipher
suite are avoided for the TER configuration. Note that when a
sensor node supports a hardware coprocessor for cryptographic
calculations, this difference is expected to be smaller.

The largest absolute energy savings are achieved in the
radio categories. This is because the communication inherent
to the DTLS handshake is not present. The difference in
total energy usage between the E2E and TER1 experiments
is again explained by the absence of the close notify message
in the TER1 case. In effect, our approach spreads the cost of
the initial DTLS handshake between the trusted gateway and
the sensor nodes (TER1) over all future interactions with the
sensor node (TER). When comparing to the lower limit, the
TER configuration consumes additional energy for performing
cryptography, sending and receiving larger packets (due to the
presence of the DTLS headers) and for sending additional
packets due to the 6LoWPAN fragmentation.

RAM (kB) ROM (kB)
DTLS server 8.1 70.8
CoAP server (reference) 6.0 48.5
Per additional DTLS session 0.596 0

Table I. CODE FOOTPRINT FOR DTLS AND COAP SERVERS AND PER
ADDITIONALLY SUPPORTED DTLS SESSION

Finally, table I lists the code footprint of the DTLS server 3.
The DTLS server includes contiki’s RPL implementation,
the TinyDTLS server and the Erbium CoAP server. When
compared to a CoAP server, the DTLS server requires an
additional 22.3 kB of ROM and 2.1 kB of RAM. When more
than one simultaneously-active DTLS session is required, the
TinyDTLS server requires 596 bytes of RAM memory for
every additional session. In our approach the DTLS server
only has one active session with the gateway, so no additional
RAM has to allocated to accommodate for multiple clients.

3The contiki source code is available at [11]. Size measurements were
performed with msp430-gcc 4.7.0.

E2E TER1 TER PLT

M
ed

ia
n 

en
er

gy
 u

sa
ge

 p
er

 c
at

eg
or

y 
(u

J)

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

CPU
IRQ
TX
RX

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

To
ta

l E
ne

rg
y 

U
sa

ge
(u

J)

Figure 6. Median energy usage per category (left axis) and total energy usage
(right axis).

Instead, supporting multiple DTLS peers is handled by the
trusted gateway.

V. RELATED WORK

In terms of related work, the ongoing efforts in the DICE
working group and two other relevant works from literature
are discussed.

DTLS In Constrained Environments (DICE) is an IETF
working group that focuses on supporting the use of DTLS
transport-layer security in constrained environments. The
scope includes both constrained devices and networks. Its first
task is to define a DTLS profile that is suitable for Internet
of Things applications and is reasonably implementable on
many constrained devices. To this end, the WG has adopted
a draft [12] that discusses the use of PSKs, raw public keys
and certificates as well other practical issues that might arise
when using DTLS. One difference from our work, is that
the constrained device is considered to be the DTLS client
and that they are preconfigured with the addresses of their
communication servers. Our approach provides more flexibility
with the constrained device as a DTLS server, as the sensors
and their data are readily accessible by multiple parties over
IP and are therefor not limited to the number of parties
programmed into the device. Apart from multicast security,
the group also intends to investigate practical issues around
the DTLS handshake in constrained environments. Proposed
work includes compression of DTLS messages and completing
the DTLS handshakes over CoAP. These mechanisms look
promising and are largely orthogonal to our work as they
aim to optimize the handshake mechanism itself. Finally, the
contribution of Keoh S. et al. [13] gives a clear overview on
securing the Internet of Things from a standardization point of
view with a focus on the IETF.

The authors of Lithe [14] propose a novel DTLS header
compression scheme that aims to reduce the energy con-
sumption by leveraging the 6LoWPAN standard. The header
compression scheme significantly reduces the number of trans-



mitted bytes while its use of 6LoWPAN ensures interoperabil-
ity with existing DTLS implementations. Their approach is
evaluated using the open source TinyDTLS implementation
on ContikiOS. The authors report significant improvements in
terms of packet size, energy consumption, processing time,
and response times. The presented compression scheme is
complementary to our approach: i.e. both approaches can
benefit from one another.

In [15], Hummen R. et al. introduce a security architecture
for delegation purposes that executes the DTLS Handshake
on a trusted and powerful delegation server. Afterwards, the
security context is transferred securely to the constrained
device by using the session resumption mechanism in DTLS.
This transfer is secured by symmetric key cryptography that
requires a secret preshared key between the constrained device
and the delegation server. As a result, the delegation server can
authenticate and authorize Internet nodes. The approach saves
a considerable amount of resources on the constrained device:
memory requirements decrease with 64%, calculations drop
with 97% and there is 68% less traffic. While the authors’
research goals are similar to ours, the followed approach
is very different. There are a number of differences worth
noting here. Firstly, our approach can provide similar gains by
offloading the handshake to a third party without requiring any
changes to the DTLS implementations running on the Internet
client and the WSN node. This is a huge benefit as adopting
the proposed delegation mechanism would take a considerable
amount of time. Secondly, our approach also allows for more
flexibility as the use of DTLS inside the WSN is configurable
and therefor optional. Finally, we also consider application-
layer processing at the gateway (e.g. caching) whereas the
delegation server operates solely on the transport layer.

VI. CONCLUSION AND FUTURE WORK

This paper has presented the use of a trusted gateway to
mitigate the overhead of the DTLS handshake in IP-based
WSNs. By terminating DTLS sessions with Internet hosts
and multiplexing their contents over a long-lived session with
the WSN node, considerable energy savings can be achieved.
Through simulation of a representative application scenario we
have shown that our approach can save up to 60% in energy
expenditure. The time to complete this scenario is also reduced
by more than half. Furthermore, our approach allows to use
different cipher suites on the public Internet and the WSN.
Thus, offering X.509 certificates on behalf of WSN nodes is
supported as well.

In the future, we will adapt our approach for networks
where the trusted gateway is not on routing path between
the Internet and the WSN. In order to reduce costs the
trusted gateway might be virtualized in the cloud, in this case
a lightweight tunnel from the cloud to the WSN gateway
might prove a feasible option. However, a solution where
every sensor node has a virtual counterpart located in the
cloud (hosted at an Internet address that is routed to the cloud)
is also possible. Furthermore, we are in the process of adding
more functionality on the application layer (such as access

control and caching for CoAP resources hosted on sensor
nodes) to this (potentially virtualized) trusted gateway.

ACKNOWLEDGEMENTS

The authors would like to acknowledge that part of this re-
search was supported by the COMACOD project. The iMinds
COMACOD project is cofunded by iMinds (Interdisciplinary
institute for Technology) a research institute founded by the
Flemish Government. Partners involved in the project are
Multicap, oneAccess, Track4C, Invenso and Trimble, with
project support of IWT.

REFERENCES

[1] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s intranet
of things to a future internet of things: a wireless-and mobility-related
view,” Wireless Communications, IEEE, vol. 17, no. 6, pp. 44–51, 2010.

[2] F. Van den Abeele, J. Hoebeke, I. Moerman, and P. Demeester, “Fine-
grained management of coap interactions with constrained iot devices,”
in Network Operations and Management Symposium (NOMS), 2014
IEEE, May 2014, pp. 1–5.

[3] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele,
E. De Poorter, I. Moerman, and P. Demeester, “Ietf standardization in
the field of the internet of things (iot): A survey,” Journal of Sensor
and Actuator Networks, vol. 2, no. 2, pp. 235–287, 2013.

[4] E. Rescorla and N. Modadugu, “Rfc 6347: Datagram
transport layer security version 1.2,” 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6347

[5] P. Eronen and H. Tschofenig, “Pre-shared key ciphersuites for transport
layer security (tls),” RFC 4279, December, Tech. Rep., 2005.

[6] O. Garcia-Morchon, S. L. Keoh, S. Kumar, P. Moreno-Sanchez,
F. Vidal-Meca, and J. H. Ziegeldorf, “Securing the IP-based
internet of things with HIP and DTLS,” Proceedings of the
sixth ACM conference on Security and privacy in wireless and
mobile networks - WiSec ’13, p. 119, 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2462096.2462117

[7] P. Membrey, D. Hows, and E. Plugge, “Ssl load balancing,” in Practical
Load Balancing. Springer, 2012, pp. 175–192.

[8] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
level sensor network simulation with cooja,” in Local Computer Net-
works, Proceedings 2006 31st IEEE Conference on. IEEE, 2006, pp.
641–648.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, Aug. 2000.

[10] F. V. den Abeele, T. Vandewinckele, J. Hoebeke, I. Moerman, and
P. Demeester, “Data for Secure communication in IP-based wireless
sensor networks via a trusted gateway publication,” Feb. 2015.
[Online]. Available: http://dx.doi.org/10.5281/zenodo.15661

[11] M. Alvira, A. Dunkels, N. Tsiftes, D. Kopf, and G. O. et al.,
“contiki: Ieee issnip 2015,” Feb. 2015. [Online]. Available:
http://dx.doi.org/10.5281/zenodo.15658

[12] E. H. Tschofenig, “A datagram transport layer security (dtls)
1.2 profile for the internet of things,” 2014. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-dice-profile-04

[13] S. L. Keoh, S. Kumar, and H. Tschofenig, “Securing the internet of
things: A standardization perspective,” Internet of Things Journal, IEEE,
vol. 1, no. 3, pp. 265–275, June 2014.

[14] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, “Lithe:
Lightweight secure coap for the internet of things,” Sensors Journal,
IEEE, vol. 13, no. 10, pp. 3711–3720, Oct 2013.

[15] R. Hummen, H. Shafagh, S. Raza, T. Voigt, and K. Wehrle, “Delegation-
based authentication and authorization for the ip-based internet of
things.”


