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Abstract—As open standards for the Internet of Things gain
traction, the current Intranet of Things will evolve to a truly
open Internet of Things, where constrained devices are first class
citizens of the public Internet. However, the large amount of
control over constrained networks offered by today’s vertically
integrated platforms, becomes even more important in an open
IoT considering its promise of direct end-to-end interactions with
constrained devices. In this paper a set of challenges is identified
for controlling interactions with constrained networks that arise
due to their constrained nature and their integration with the
public Internet. Furthermore, a number of solutions are presented
for overcoming these challenges by means of an intercepting
intermediary at the edge of the constrained network.

I. INTRODUCTION

In the current Internet of things many vendors rely on their
own platforms to create vertical solutions, a phenomenon that
is commonly referred to as the Intranet of Things [1]. The
resulting products are typically only accessible to the manu-
facturer. While this approach gives manufacturers a maximum
of control over their product, it also severely hampers re-using
existing things and technology in new services. This in turn
restricts the opportunities for new service providers to enter
the IoT market.

Standardization is one piece of the answer to break open the
Intranet of things. There have been numerous standardization
efforts for the IoT by standard developing organization (SDOs)
like the W3C, ETSI, OGC and many others. The SDO most
applicable to the Internet - the Internet Engineering Task
Force (IETF) - however, is developing a protocol stack [2]
for integrating constrained node networks [3] (CNNs) into
the public Internet (see Figure 1). Most notable is the recent
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Fig. 1: IETF IoT protocol stack

ratification of an application-layer protocol named the Con-
strained Application Protocol (CoAP) [4]. CoAP employs a
RESTful client-server design for interacting with constrained
devices. Devices essentially become web services that can be

consumed by applications, thus giving rise to a so-called Web
of Things [5] (WoT). CoAP relies on transport layer security in
the form of DTLS, which is in simple terms TLS over UDP.
The IETF DICE working group is looking to standardize a
set of DTLS protocol parameters for use in the IoT domain.
Apart from an application-layer protocol the IETF has also
standardized 6LoWPAN, a protocol which facilitates the use
of IPv6 inside CNNs, and RPL, a routing protocol for CNNs.
Next to communicating application data, CoAP can also be
re-used as a protocol to manage devices (e.g. access control
lists, device settings and other parameters), as is the case in
the Open Mobile Alliance lightweight M2M standard [6].

The availability of open standards alone is not enough to
open up the Intranet of Things. As mentioned, one of the
benefits of employing vertical silos is the strict control of
owners over their devices and data. This control is necessary
due to the constrainedness (in terms of processing power and
energy budget) of the devices and the networks involved. A
network running only the IETF IoT protocol lacks the level
of control typically found in vertically integrated products.
Clearly, in order to expedite the adoption of these open
standards the needs of vendors for controlling and managing
constrained networks and devices should be addressed.

Our contribution in this paper consists of identifying a
number of open problems for controlling interactions with
constrained networks and nodes that are running the open IETF
IoT protocol stack on so-called class 1 devices. Capabilities
of class 1 devices are limited to ∼10 KiB of RAM and
∼100 KiB of ROM [3]. Furthermore, we propose a flexible
architecture that enables chaining together function blocks -
known as adapters - on an intermediary system to build specific
solutions for the identified problems. This architecture enables
us to implement fine-grained and configurable control and
management of constrained devices.

II. ISSUES WITH RUNNING THE OPEN IETF IOT STACK

While naively deploying the IETF IoT stack on class 1
devices would effectively tear down the Intranet of Things,
the resulting direct end-to-end connectivity with any other
Internet host would also cause a number of serious threats for
the constrained network. When left unaddressed, these threats
could severely compromise the network’s operation. As will
be shown, constrained devices themselves are often unsuited
to address these issues due to their limited resources and
available energy budget. This section categorizes these threats.
Section III outlines our approach for tacking these issues. This
leads to a number solutions in section IV.



A. Security with DTLS

In the IETF stack of Figure 1, the preferred transport
layer security protocol is DTLS. While DTLS offers endpoint
authentication, data integrity and confidentiality; it does so at
considerable cost for class 1 devices.

Firstly, DTLS is difficult to deploy on this type of devices.
As mentioned in [7], the code footprint of a DTLS implemen-
tation on a constrained device lies around 16 KB of ROM and
4 KB of RAM. Considering the capabilities of class 1 devices
mentioned in the previous section, the large RAM footprint
is problematic. Since the DICE working group did not reach
consensus to change the workings of the DTLS protocol itself,
this footprint is expected to stay unchanged in the near future.

Apart from the footprint, communication overhead is a
second issue for all types of constrained devices. This overhead
is primarily caused by the DTLS handshake, which has to
occur between any two hosts that want to setup a DTLS
session. The overhead becomes unworkable in situations where
a constrained node interacts with a multitude of Internet hosts.
In this case, a DTLS session has to be setup with every
communicating host. Keoh et al. [7] have determined the
communication overhead for a single-hop network without any
packet loss to be an additional 12 messages spanning four extra
round trips. These extra messages can be attributed entirely to
the complex DTLS handshake.

There is also the problem of exchanging the necessary
cryptographic information (e.g. a session key) between hosts.
As constrained nodes often lack asymmetric cryptography
support due to its high complexity, exchanging a session
key can be challenging. This also means that a public key
infrastructure - which is very popular on the Web today - is
unfeasible for most constrained networks.

Finally, configuring and enforcing access rules to sensitive
information is an other important feature that is lacking in
the IETF IoT stack. Some parties might have access to all
CoAP resources on a constrained device, while other should
only have access to one or two resources. Implementing such
an elaborate and fine-grained access control mechanism is too
complex for constrained devices.

B. Limited amount of network resources

The end-to-end connectivity provided by the IETF stack
enables direct interactions with constrained devices. While
this allows applications to interface directly with constrained
devices themselves, caution should be exercised in order to
avoid unwanted depletion of the resources of the network
and its devices. As an example, the owner of a constrained
network will refrain from deploying the CoAP stack when it
does not prevent abuse of the network by e.g. rapidly draining
the network’s energy reserve or computationally overloading
specific devices in the network. Clearly, additional control
of the network access is necessary to avoid such abuse by
malicious users. Note that managing Internet access to the
constrained network differs from secure communication (e.g.
via DTLS), i.e. the former is almost always necessary while
the latter is not.

C. Exposing additional information

The set of information offered by a network composed of
class 1 devices is often determined at deploy time. This is
because it is cumbersome to update these devices with new
software once they are in the field. Therefor it is difficult
to offer new information in the form of CoAP resources
on devices that are already deployed. Moreover, it is not
always possible to store this information on the device so
that it can be recuperated after a device reset. In other cases,
the information cannot be generated by the device (think of
diagnostic networking and routing information) or the cost of
transporting it to the device is too high. Note that this cost
goes up with the volatility of the information.

III. INTERCEPTING INTERMEDIARY CONCEPT

All of the problems presented in the previous section are
difficult to solve by focusing only on class 1 devices. There
are two primary reasons for this, firstly a class 1 device lacks
the resources necessary to tackle these issues. Secondly, some
issues can not be solved by the device itself because they
require e.g. a global overview of all interactions with the
network or because the goal is to minimize the amount of inter-
actions with the device. Therefor, our approach aims to solve
these issues by relying on an intermediary party, that is less
constrained than a class 1 device, to do the necessary “heavy
lifting”. In Internet integrated networks, this intermediary is
usually the edge router or Internet gateway. Thus, their typical
tasks like bridging link-layer technologies, network routing and
firewalling are expanded with responsibilities at the transport
and application layers.

We decided to pursue the concept of an intercepting
intermediary. This is a network node that processes all passing
traffic even though it is neither the source nor the destination
of said traffic. By focusing on an intermediary node and its
transparency towards end hosts, changes to existing infras-
tructure are kept to a minimum which makes our solution
easy to deploy alongside existing IoT networks. For the best
results, the intermediary should be deployed at the edge of the
constrained network (e.g. at the Internet gateway). However,
while not presented here, a distributed deployment with a
cloud-computing component is also possible.

An overview of the intercepting intermediary is shown in
Figure 2. Packets going to and from the constrained network
are handled on the intermediary by an Intercept element, which
decides based on information available at the matching service
whether the intermediary should perform any processing on the
CoAP message. The interception component (lower right of the
figure) contains a lists of transformations that are to be applied
for specific CoAP URIs on a per host or per subnet basis.
These transformations are ordered lists of adapters, such a list
is called an adapter chain. Adapters are function blocks that
process CoAP messages. They can implement a wide range
of functionality: amongst other things they can alter CoAP
requests and the responses, inspect passing packets, consume
external services and autonomously respond to requests on
behalf of constrained devices.

The Matching service element is responsible for executing
each adapter in the chain in sequence, while all the time
passing along the intercepted CoAP message. When one of



adaptation-methods. Within the request-reply architecture it should be possible

to implement pretty much any functionality.

3.3. Components

The architecture of the extended CoAP support is shown in figure 3.2. For clarity,

the components implementing the existing gateway functionality are not shown.

The blue arrows display the flow of request packets through the system, the

grey arrows indicate a control interaction. Response packets travel through the

gateway in a similar way.

3.3.1. Intercepting requests

The Click configuration is extended with a first element, positioned in front of

the routing element, which dispatches packets according to their destinaton

address. As all packets pass through this element, it is the ideal position to

extract a subset of packets which meet certain requirements. This element is

the VirtualCOAPIntercept. It checks if any protocol enhancements are defined

for the destination IP and path given in the request and if so, lifts the packet

from its normal route.
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Figure 3.2: Architecture of Click-router with VirtualCoAP elementsFig. 2: Overview of intercepting intermediary for fine-grained management of CoAP interactions

the adapters signals that a response is available, execution of
the message in the chain is stopped and the response traverses
the chain in reverse allowing each adapter to alter the response.
After traversing the adapter chain in reverse, the response is
sent back to the source of the request. This process of messages
and responses traversing through the adapter chain is illustrated
in Figure 3.
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Figure 3.3: Flow of request and response through the adapter chain.

After a response is generated, all information is once again passed through the

chain but now backwards, starting at the element that generated the response.

When the chain has been completed, the response can be sent to the client.

Figure 3.3 shows an example of a request traversing the chain (through A, B

and then C), being fulfilled by adapter C (and therefore skipping adapter D),

and the response being passed back in the other direction (through C, B and

then A).

This system allows for a wide variety in adapter functionality: requests and re-

sponses can be modified, just be inspected, or be answered by any adapter in the

chain. Typically, adapters that change the request or the response are located

at the beginning of the chain, so they are always executed, while adapters that

generate information are placed at the end of the chain.

3.4. Configuration

To demonstrate the run-time dynamics of VirtualCOAP, the configuration of adap-

ters and interceptions can be done completely through CoAP as well. A Virtual-

COAPManagementModule was added to the gateway’s backend, which provides the

/virtualResources endpoint for interacting with the configuration of the Virtu-

alCOAPServerBackend.

Another motivation for this configuration facility is that it allows automatic con-

figuration of the router by other devices that want to make use of the sensor

network and are aware of the VirtualCOAP-functionality. It also allows easy con-

struction and destruction of test environments (see section 5.1.1).

For instance, to enable caching on the temperature-resource of sensor AAAA::2,

the following exchange would take place.

Fig. 3: Flow of a CoAP messages and responses through an
adapter chain

The intercepting intermediary, adapter chains and matching
filters are the key concepts that offer the necessary flexibility
for reconfigurable, fine-grained and device-specific manage-
ment and control.

IV. INTERCEPTING INTERMEDIARY FOR MANAGING
COAP INTERACTIONS IN CONSTRAINED NODE NETWORKS

Our approach for tackling the issues identified with deploy-
ing DTLS is two-fold and depends on whether the constrained
device is capable of supporting the DTLS protocol considering
its footprint. In both cases we suggest to terminate the DTLS
session with the public Internet host at the gateway. For DTLS-
capable devices, a separate long-lived session is maintained
between the gateway and the device. For devices not capable
of supporting DTLS, we suppose either using no security
at all (thus DTLS is only applied on the public leg of the
communication path) or relying on application-layer security,
where all data above the transport layer is encrypted using
a shared secret. The latter approach can be realized in a
smaller footprint than DTLS with PSK cipher suites as e.g.
the handshake mechanism can be omitted. This idea lies on
the assumption that there is a trust relationship between the

device and its gateway. Setting up a secure channel between the
gateway and the device, allows to multiplex CoAP messages
to and from a multitude of hosts over this channel. Note that
terminating the DTLS session at the gateway is done in a
transparent manner, from the point of view of the Internet host
it appears as if it is communicating with the device directly
over DTLS. No changes to the public Internet host are nec-
essary. This approach allows to overcome the large footprint
of DTLS on class 1 devices by relying on application layer
security while still supporting DTLS to the public Internet.
It also avoids the high communication overhead of having to
setup ephemeral DTLS sessions for every public Internet host.
Finally, cryptographic information only has to be exchanged
once between the device and its gateway; which greatly eases
key distribution.

For managing access to the limited amount of network re-
sources three ideas are formulated in this paragraph. As CoAP
has a built-in albeit simple congestion control mechanism,
that strictly limits the amount of simultaneous outstanding
interactions of a client to a server. By default, the limit is
one connection. By monitoring traffic at the gateway for all
hosts communicating with the constrained network, we can
enforce this mechanism and filter out clients that are not
following CoAP’s congestion control mechanism. In case of
a confirmable request, retransmissions can be delayed at the
gateway when they arrive before the average round trip time
to the constrained node has expired. Apart from end-to-end
congestion control mechanisms, the gateway can also enforce
more global policies where the rate of interactions with the
entire constrained network can be limited. A straightforward
but effective method to cope with the limited amount of
network resources, is to employ a CoAP cache at the edge
of the network. Not only does this improve response times
considerably for cacheable CoAP resources in the network,
it also decreases the amount of CoAP messages that have
to processed by the constrained network. Our third and final
suggestion for controlling CoAP interactions, is to apply an
access control list at the edge of the network. When compared
to an ACL on the device itself, unauthorized communication
can already be dropped at the edge of the network without the



network having to waste resources in routing and processing
messages to their destination where they would be dropped
anyway.

For offering information that can not be stored at the
constrained device we propose to emulate CoAP resources
on behalf of the device at an intermediary. This has to the
benefit of alleviating the device of storing and communicating
the resource everytime it is accessed or updated. In order to
make emulation of CoAP resources completely transparent to
the outside world, the responses appear to originate from the
device. Also, the emulated resources have to be injected in
CoAP’s .well-known/core discovery resource on the device
itself.

V. INITIAL IMPLEMENTATION AND RESULTS

Our intercepting intermediary is built using Click, a mod-
ular software router [8]. The implementation expands upon
previous work performed at our research group. The adapters
allow for a modular approach to implementing our suggestions
and at the time of writing these adapters are implemented:

(a) CoAP congestion control adapter: implements the default
CoAP CC mechanism detailed in section IV.

(b) CoAP caching adapter: serves CoAP responses.
(c) CoAP resource emulation and .well-known/core rewriting

adapters: emulates CoAP resources on behalf of con-
strained devices and makes these discoverable

(d) CoAP proxy adapter: this is usually the last adapter in a
chain, it is used to fetch a response from the constrained
network.

Note that implementation work on DTLS adapters is ongoing,
but that it is currently too premature to be mentioned here.

Creating and configuring a chain of adapters on the inter-
mediary is accomplished via a CoAP request. In the listing
below a management client (typically the owner of the con-
strained network) executes a POST request to a subresource
of adapterChains on the intermediary. The name of the sub-
resource determines the set of constrained devices for which
network traffic should be intercepted and passed on to the
adapter chain. Apart from specifying entire IPv6 subnetworks,
individual hosts can also be specified. The payload of the
request contains an ordered list of adapters (the ‘chain’ key
in the dictionary) and a path further specifying for which
CoAP resources the chain has to be applied. In this example a
chain that enforces CoAP’s congestion control, caches CoAP
responses and fetches responses from the network is created
for all CoAP resources on all hosts in the aaaa::/64 subnet. The
intermediary responds with the location of the CoAP resource
that is created to allow future changes to the adapter chain.
Parameters of specific adapters can also be configured at this
location.

Management client Intermediary
| -- POST, /adapterChains/aaaa::˜64 --> |
| PAYLOAD: {"path": "*", "chain": |
| ["congestioncontrol", |
| "cache","proxy"]} |
| |
| <-- 2.01 Created --- |
| /adapterChains/aaaa::˜64 |

This adapter chain is used in an example when retrieving
a CoAP resource of variable size from a constrained device.
In a first scenario the chain is activated, while in the second
scenario it is not. In both scenarios the number of packets
transmitted by the intermediary (including retransmissions)
and received by the constrained node are measured. The results
for the two scenarios are shown in Figure 4. Note that mainly
the influence of the cache is noticeable in this figure, however
it also demonstrates that our approach of an intercepting
intermediary is valid. Here the adapter chain is applied to an
entire subnet, but it can also be applied to specific devices.

Another factor contributing to the higer response times in the caching scenario,

are the timeouts that occur in the COAPClientServer. When no response is re-

ceived after 4 transmissions of the request, it is considered failed and no re-

sponse time is noted. As the total network load is lower in the caching scenario,

an additional number of requests can finish, albeit with a final higher response

time.

The energy usage shown in figure 5.6 is obtained by multiplying the time spent

in each state (for radio and MCU) with the energy consumption, as noted in the

Tmote Sky’s datasheet [21]. The radio uses the largest chunk: although the

radio RX and TX periods are particularly short, they require a lot of power (±

20mA at 3V). Even in idle state, the radio consumes significantly more than the

CPU in idle mode (365μA vs. 54.5μA) as the radio oscillator remains powered.

It should be noted that the bars do not represent the usage over a period of

time, but rather for a certain workload. If the requests were distributed across

an equal amount of time in both scenarios, we would likely see a larger share of

energy spent on MCU and radio idling in the caching scenario, since it is able

to complete its workload faster then the standard setup.
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Figure 5.5: Packets sent and received for increasing resource sizeFig. 4: Packets sent and received for increasing resource size

To illustrate that adapters can also be used to store and
retrieve information for diagnostic purposes of the networks
and its devices, consider a chain that consists of only a resource
emulation adapter. The adapter implements a CoAP resource
on behalf of the constrained device that combines operational
information retrieved from the constrained node (e.g. remain-
ing battery life, routing table) with information available at the
gateway (e.g. number of forwarded bytes).

VI. CONCLUSION

This paper has listed a number of management issues
commonly encountered when deploying the IETF IoT stack
in constrained networks consisting of class 1 devices. Due
to their unique characteristics, DTLS-based transport-layer
security and fine-grained access control are challenging for
this type of networks. Furthermore, unwanted abuse of limited
network resources should be kept to a minimum. Finally, class
1 devices sometimes have to be instrumented after they are
deployed in the field. Following an approach with function
blocks deployed at an intercepting intermediary, gives us the
flexibility needed to solve these issues. Preliminary work has
begun on implementing and evaluating our suggestions. As a
long-term result of this work, the authors hope to see an uptake
in the adoption of the open IETF IoT standards by vendors.
This would lead to a truly open Internet of Things much like
the conventional Internet of today.
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