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Abstract: As the IoT continues to grow over the coming years, resource-constrained devices1

and networks will see an increase in traffic as everything is connected in an open Web of Things.2

Performance and function enhancing features are difficult to provide in resource-constrained3

environments, but will gain importance if the WoT is to be scaled up successfully. For example,4

scalable open standards-based authentication and authorization will be important to manage5

access to the limited resources of constrained devices and networks. Additionally, features such6

as caching and virtualization may help further reduce the load on these constrained systems.7

This work presents the Secure Service Proxy (SSP): a constrained-network edge proxy with the8

goal of improving the performance and functionality of constrained RESTful environments. Our9

evaluations show that the proposed design reaches its goal by reducing the load on constrained10

devices while implementing a wide range of features as different adapters. Specifically, the results11

show that the SSP leads to significant savings in processing, network traffic, network delay and12

packet loss rates for constrained devices. As a result, the SSP helps to guarantee the proper operation13

of constrained networks as these networks form an ever-expanding Web of Things.14
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1. Introduction16

In recent years the Internet of Things (IoT) has increasingly become a hot topic in industry,17

academia, the do it yourself community and also consumers. Businesses are attracted by the new18

product opportunities and new sources of revenue that the IoT promises to bring. For example, a19

2013 market report on IoT by Cisco Inc. predicts 14.4 trillion USD in created value for the “Internet20

of Everything” from 2013 to 2022 [? ]. Academia are interested in the many new problems and issues21

that arise when deploying billions of devices on the Internet. These issues include big data analytics,22

energy efficient communications, large scale deployments, management of devices, communication23

protocols, security models, data privacy and many more. An introduction to the research aspect of24

the IoT is presented in [? ]. Finally, consumers are drawn to the IoT because IoT products promise to25

bring improvements and novel services to their daily lives. Examples of IoT domains include smart26

home, smart health, smart transportation, smart factory, smart grid and many more [? ].27

As the Internet of Things continues to grow in scope and in size, the number of available28

technologies and platforms that promise to enable the IoT keeps increasing. As a family of29

such technologies, a complete protocol stack was standardized at the Internet Engineering Task30

Force (IETF) for use with constrained IoT devices in low power and lossy networks (LLNs) [? ].31

This suite of protocols defines the communication stack from the network layer up to the application32
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layer. In contrast to the popular alternative ZigBee [? ], the IETF protocol stack gives the developer33

more flexibility to model the network and the application to a specific use-case. For instance, with the34

IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [? ] the routing can be tuned35

by employing different objective functions that optimize routes according to the metrics that are36

relevant to the use case (e.g. minimize hop count, maximize battery lifetime, etc.). Another example37

of flexibility is found at the application layer, where the REST architecture followed by the CoAP38

protocol allows developers to design their own RESTful resources and to model their behavior. In39

terms of security, the IETF elected to standardize an end-to-end (E2E) architecture as it is a popular40

choice on the unconstrained Web today. Therefore, the CoAP standard defines DTLS (i.e. Datagram41

TLS) as its recommended security method.42

Secure Sockets Layer (SSL) and later Transport Layer Security (TLS) have been around since the43

end of the past century and have become very popular protocols for their roles in securing the WWW.44

Today, (D)TLS has become a flexible protocol where endpoints can negotiate the type of security45

and where a built-in extensions mechanism allows to add new features to the protocol without46

touching the base specification. A comprehensive overview of the (D)TLS protocol is presented in47

the Background section ??. Widespread adoption, a wide range of implementations, an open protocol48

specification and a high level of interoperability are just a few of the benefits of the TLS protocol.49

Nevertheless, one should be careful when deploying end-to-end security with DTLS in constrained50

environments. This issue has been recognized by the IETF which has formulated guidance for51

implementing and deploying DTLS in constrained environments in RFC 7925 [? ]..52

Despite the advantages offered by DTLS, E2E security has a number of disadvantages when53

deployed as-is in LLNs. One issue with E2E security is that it completely blocks out any third54

party (e.g. intermediate middleboxes) from taking part in the communication. In most traditional55

Internet deployments this is a wanted property of E2E security, but in LLNs it stops intermediary56

systems from providing services that can improve resource usage and performance of constrained57

devices and networks. For example, caching of CoAP responses is not possible when E2E security58

is applied between the CoAP client and the constrained CoAP server. A second disadvantage59

of E2E security is that application-layer enhancements cannot be applied by middleboxes as all60

communication is enciphered. Thus, access control, admittance control and other similar features61

cannot be provided at the edge of the LLN. Another known problem with DTLS is its performance62

in duty-cycled networks, which is common in multi-hop LLNs. Research [? ] has shown that the63

latency introduced by the DTLS handshake can become excessively large in multi-hop duty-cycled64

networks (up to 50 seconds for 4 hops). Vuc̆inć et al. also show that constrained nodes can only65

store a limited number of DTLS sessions in their memory (e.g. max. 3 DTLS session for a WiSMote66

node). As a result, nodes have to start dropping active DTLS sessions from memory which can67

deteriorate battery lifetime and DTLS performance. Finally, end-to-end network addressing reduces68

the effectiveness of 6LoWPAN compression. This is due to the fact that the IPv6 prefixes for nodes69

situated on the Internet and the used UDP ports are difficult or impossible to compress on 6LoWPAN.70

All these issues are covered in greater depth in the problem statement, cf. section ??.71

The goal of this work is to overcome the issues identified with E2E security without losing72

the benefits offered by such a widely used protocol as DTLS. To this end, we propose the “Secure73

Service Proxy” (SSP). It is a reverse DTLS and CoAP proxy that provides a secure bridge between74

clients on the Internet and constrained IoT devices in a low-power and lossy network. By employing75

DTLS on both legs of the communication path, the resulting system can still enjoy most of the76

benefits offered by the popularity of DTLS without suffering from the disadvantages of E2E security77

specific to constrained environments (as identified in the previous paragraph). As the SSP operates78

as a trusted entity in the network, it can also offer network services such as caching as well as79

application-layer enhancements. For the latter, this paper employs the concept of node virtualization80

where a constrained node has a virtual counterpart that resides on the proxy and that offers81

additional functionality on behalf of the node. This virtualization concept is effective because82
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the SSP is deployed on hardware more powerful than the constrained nodes themselves. As a83

result, node virtualization can offer new and complex functionality that is unfeasible to offer on the84

constrained node itself. Examples include support for more complex modes of DTLS (e.g. public key85

infrastructure and certificate-based suites), translating responses between content formats, offering86

verbose semantic descriptions for the constrained node, storing large binary blobs (e.g. a picture of87

the deployment area), keeping historical data, etc.88

Our contributions in this paper are as follows. First, we identify and discuss a number of issues89

with end-to-end security in constrained RESTful environments. We argue that these issues can be90

overcome by a reverse proxy approach that splits the end-to-end security at the proxy. Secondly,91

we design and implement such a reverse proxy. Apart from solving the E2E security issues, our92

developed proxy can also offer additional functionality and services on behalf of the constrained93

network and the constrained nodes. To our knowledge, this work is the first to study, design,94

implement and evaluate a reverse proxy for use with end-to-end security in constrained RESTful95

environments. Finally, by means of a real-world evaluation we show that our work can significantly96

improve the operation of constrained networks by reducing power consumption, network latency97

and network traffic.98

The rest of this paper is structured as follows. First a brief overview of CoAP and DTLS is99

presented in the next section. Using this overview, a number of issues with deploying CoAP and100

DTLS in low-power and lossy networks is presented in section ??. This section also lists the research101

goals of this work. In section ??, our approach to tackling these issues is presented together with the102

design of the secure service proxy and an overview of the security risks related to breaking end-to-end103

security. The secure service proxy is aligned to similar work in literature and the commercial world104

in section ??. An extensive evaluation of our approach based on both simulations and a real-world105

wireless sensor network testbed is presented in section ??. Section ?? presents the conclusions that106

are drawn from this work.107

2. Overview of CoAP and DTLS108

2.1. The Constrained Application Protocol (CoAP)109

RFC 7252 [? ] states that the Constrained Application Protocol (CoAP) is a specialized110

web transfer protocol for use with constrained nodes and constrained networks in the Internet of111

Things. The protocol is designed for machine-to-machine (M2M) applications such as smart energy112

and building automation. The main design considerations for CoAP include simplicity, very low113

overhead, easy translation to and from HTTP and support for multicast.114

In CoAP, constrained devices that host applications structure their data and actions as RESTful115

web services, also called CoAP resources. CoAP clients send requests to resources in order to retrieve116

and store data or trigger actions. CoAP defines the same request methods as HTTP: GET, PUT, POST117

and DELETE. They are used respectively for retrieving data, storing data, toggling an action and118

removing data. CoAP chose UDP as its transport protocol due to the lightweight nature of UDP (TCP119

was deemed too verbose due to its connections and too complex to implement in constrained120

devices). Therefore, CoAP includes a simple reliability layer and deduplication mechanism in order121

to compensate for the minimalistic nature of UDP. In order to minimize overhead, CoAP uses a binary122

format for encoding message options in the headers of CoAP requests and responses. As a result the123

CoAP message size is significantly reduced when compared to a non-binary encoded protocol such as124

HTTP [? ], which is important in LLNs where message sizes are typically small and communication125

is expensive for battery-powered devices.126

An illustration of a typical CoAP request/response exchange is shown in figure ??, where a127

client (a ventilation unit) retrieves a temperature resource on a CoAP server. The first elements of the128

CoAP header are the 2-bit protocol version (RFC 7252 standardizes version 1) and the 2-bit message129

type. By sending a Confirmable message, a sender can ask a receiver to acknowledge the reception of130
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CoAP request (8 bytes):
42 01 72 56 ff 12 b1 74

Version: 1 (0x42)
Type: Confirmable (0x42)
Token length: 2 (0x42)
Request code: GET (0x01)
Message ID: 0x72 56
Token: 0xff 12
Uri‐Path option: t (0xb1 74)

CoAP response (12 bytes):
62 45 72 56 ff 12 c0 ff 31 37 2e 30

Version: 1 (0x62)
Type: Acknowledgement (0x62)
Token length: 2 (0x62)
Response code: 2.05 (0x45)
Message ID: 0x72 56
Token: 0xff 12
Content‐Format: plain‐text (0xc0)
End‐of‐options marker: 0xff
Payload: 17.0 (0x31 37 2e 30)

GET /t

2.05 Content: 17.0

2 b
2 b
4 b
8 b

16 b
2 B

1+1 B

2 b
2 b
4 b
8 b

16 b
2 B
1 B
1 B
4 B

4 B

Figure 1. Anatomy of a typical CoAP request and response

a message. This is reflected in the message type of the response which is an acknowledgment. In most131

cases (like here) the response message is actually piggy-backed on the acknowledgment message in132

order to reduce the number of messages. The 4-bit token length comes after the message type in the133

CoAP header and it represents the length of the optional message token in bytes. The next element134

of the CoAP header is the 8-bit message code, which consists of a 3-bit class and a 5-bit subfield.135

Requests codes are class 0 codes (e.g. GET is code 0.01) and successful response codes are class 2136

codes (e.g. Content is code 2.05). The final part of the fixed 4-byte CoAP header is the two byte137

message ID. It is used for deduplication and for confirmable messages where acknowledgments echo138

the message ID of the CON message. The token is used to match a response with a request and can139

vary in length between 0 and 8 bytes. After the token come the header options and the payload (if140

any). In CoAP header options are assigned unique numbers by IANA and are delta encoded in CoAP141

messages in order to reduce their encoding size. Every option encoding contains the delta of the142

option number (relative to the preceding option), the size of the value of the option (in bytes) and the143

value of the option. Finally, the options and the payload are separated by an end-of-options marker144

(0xff).145

CoAP observe [? ] is a CoAP protocol extension that is important for this work. When a client is146

observing a REST resource on a CoAP server, the server will notify the client of state changes for that147

resource. This frees the client from polling the resource on the server, which can save resources in148

LLNs when changes in resource state occur rarely. RFC 7641 [? ] also states that intermediaries must149

aggregate observe registrations: “If two or more clients have registered their interest in a resource150

with an intermediary, the intermediary MUST register itself only once with the next hop and fan151

out the notifications it receives to all registered clients. This relieves the next hop from sending152

the same notifications multiple times and thus enables scalability.”. Apart from enabling scalability,153

aggregation also saves resources.154

2.2. Datagram Transport Layer Security (DTLS)155

For security, CoAP standardized end-to-end security and DTLS as its default security mechanism156

and protocol respectively. The primary motivation for preferring transport-layer security over157

alternatives such as object security and network layer security, is the popularity of TLS on the158

conventional Web. Datagram TLS is by design very similar to the TLS protocol and the specification159
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of DTLS is largely written as a set of changes to the TLS specification [? ]. However there are some key160

differences as DTLS runs over an unreliable datagram transport while TLS runs over the reliable TCP161

transport. Therefore, DTLS must cope with the reliable and ordered delivery of packets as available in162

TLS. To this end, DTLS introduces a simple timeout and retransmission scheme and adds an explicit163

sequence number to the Record Protocol (versus an implicit number as available via TCP in TLS).164

Another difference is that stream ciphers must not be used with DTLS. DTLS also enhanced the165

handshake protocol with a stateless cookie exchange for Denial of Service resistance. By forcing DTLS166

clients to echo the cookie in their second handshake message, malicious clients (e.g. those spoofing IP167

addresses) can be rooted out and a DTLS server can avoid wasting resources on bogus handshakes.168

DTLS is a session-based protocol in that DTLS endpoints have to set up a session when169

they want to communicate securely. Negotiation of the security parameters for the session and170

peer authentication are both performed during the handshake phase of the protocol. After the171

handshake phase, both endpoints can exchange data with guarantees for confidentiality, endpoint172

authentication and integrity of the data. To this end, DTLS employs symmetric cryptography for173

data encryption according to an encryption algorithm and encryption keys that are agreed during the174

handshake. DTLS also guarantees message integrity by means of hash-based message authentication175

codes (HMAC). Sessions are typically negotiated on an ad-hoc basis, although long-term sessions and176

resumption of established sessions are possible in DTLS.177

TLS introduces the concept of cipher suites, these are named combinations of the authentication178

and key exchange algorithm, the cipher and key length, the cipher mode of operation, the hash179

algorithm for integrity protection and the hash algorithm for use with pseudorandom functions.180

DTLS 
client

DTLS 
server

ClientHello

ClientHello
with Cookie

HelloVerifyRequest

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished ChangeCipherSpec

Finished

Figure 2. The full DTLS handshake

The DTLS handshake is shown in figure ??. In order to reduce the number of network packets,181

multiple DTLS messages can be grouped into a single flight of messages. In the figure the horizontal182

arrows correspond to the different message flights. The DTLS client initiates the handshake with183

the ClientHello message, to which the server replies with a HelloVerifyRequest message. The184

HelloVerifyRequest message contains the stateless cookie for DoS mitigation and must be echoed by185

the client in its second ClientHello message. After the server has verified the cookie, it responds with186

the ServerHello message. The hello messages are used to establish security enhancement capabilities187

between client and server [? ]. They establish the following attributes: protocol version, session188
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ID (used in session resumption), cipher suite and compression method. Additionally, two random189

values are generated and exchanged: one for the client and one for the server.190

The messages of the remainder of the handshake depend on the negotiated security191

enhancement capabilities. In the figure, messages marked with an asterisk (*) are optional192

or situation-dependent messages. The figure shows the message flow for a certificate-based193

cipher suite where the server replies with Certificate, ServerKeyExchange, CertificateRequest and194

ServerHelloDone messages. If the cipher suite requires the server to authenticate itself, then the server195

sends its X.509 certificate in a Certificate message. In cases where the key exchange does not use the196

server certificate, the server may send a ServerKeyExchange message. For example in Pre-Shared Key197

cipher suites (PSK suites are discussed later), the server may send a hint in the ServerKeyExchange198

message to help the client in selecting which PSK identity to use. Additionally, the server may also199

send a CertificateRequest message to request a certificate from the client. Finally, a ServerHelloDone200

message is sent by the server to indicate that the hello-message phase of the handshake is complete.201

If the server requested a certificate, the client must provide one in its Certificate message. Next,202

the client sends a ClientKeyExchange message, the contents of which depend on the chosen key203

exchange algorithm. In the case of RSA for example, the client chooses a secret and encrypts it204

with the public key from the certificate of the server and sends the result in the ClientKeyExchange205

message. Together with the Certificate and ServerKeyExchange messages of the server, the client’s206

Certificate and ClientKeyExchange messages are used for the key exchange. The CertificateVerify207

message allows the client to prove the possession of the private key in the certificate. In the case of208

Pre-Shared key cipher suites, the key exchange of the client consists of a ClientKeyExchange message209

which contains the identity of the chosen PSK.210

Next, the client sends a ChangeCipherSpec message which signals that the client has switched to211

the negotiated cipher spec. The client then immediately sends the Finished message which contains212

a hash of the shared secret and all handshake messages. The server must verify the contents of213

the Finished message in order to detect any tampering to the handshake messages. The Finished214

message also proves that the client knows the correct shared secret (i.e. the pre-master secret) and215

any subsequent keying material (master secret, encryption keys and MAC keys) is generated from216

this pre-master secret. After the server has sent its own ChangeCipherSpec and Finished messages217

and the client has successfully verified the Finished message, the handshake is completed and secure218

communication of application data can start.219

2.3. DTLS in constrained environments220

There are a number of additional protocol features that are applicable to DTLS in constrained221

environments and these are discussed in this subsection. RFC 5116 [? ] introduced authenticated222

encryption with associated data (AEAD) to TLS which enables the use of cipher suites that use223

the same cipher for confidentiality, authenticity and integrity protection. Particularly in constrained224

environments, AEAD provides the benefit of more compact implementations as only one cipher has225

to be implemented.226

RFC 6655 [? ] defines multiple of such compact cipher suites that use the widespread AES227

cipher in the Counter with Cipher Block Chaining - Message Authentication Code (CBC-MAC) Mode228

(CCM). AES is a popular choice in constrained environments as it is often accelerated in hardware in229

modern IoT systems (e.g. the TI CC2538 SoC has an AES accelerator on the same die as the ARM-M3230

CPU). Note that the AEAD construct is only supported from version 1.2 of the DTLS protocol.231

RFC 4279 [? ] introduces Pre-Shared Key (PSK) cipher suites for TLS. These cipher suites are232

interesting for constrained devices, as the size of the key exchange is minimal: typically only a PSK233

identifier in the Client Key Exchange is exchanged. Of course key management is an important issue234

in this case, as common cryptography practice dictates that a unique PSK should be allocated for235

every peer. The ‘TLS_PSK_WITH_AES_128_CCM_8’ cipher suite combines the benefits of PSKs and236

AES-CCM in that only one cipher is needed (AES) and the key exchange is minimal. This cipher suite237
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is also the mandatory-to-implement PSK cipher suite for DTLS in the CoAP RFC [? ]. Furthermore,238

this suite uses just an 8 byte authentication tag (as opposed to a 16 byte tag) which is more suitable in239

networks where bandwidth is constrained and messages sizes may be small.240

RFC 7250 [? ] introduces a new certificate type and two TLS extensions for exchanging raw241

public keys (RPKs) in DTLS. In this case a peer has an asymmetric key pair but it does not have an242

X.509 certificate, this asymmetric key pair is the RPK. This extension allows raw public key to be used243

for authentication, which is beneficial in constrained environments as RPKs are smaller in size than244

X.509 certificates. Additionally the resulting key exchange is therefore smaller as well. Of course, the245

scalability benefits of a Public Key infrastructure (PKI) are lost when using RPKs.246

Finally, RFC 7251 [? ] describes the use of AES-CMM elliptic curve cryptography (ECC) cipher247

suites in DTLS. This type of cipher suites uses the AEAD mechanism to provide confidentiality,248

authenticity and integrity of application data with just AES, while using Ephemeral Elliptic Curve249

Diffie-Hellman (ECDHE) as their key exchange and peer authentication mechanisms. ECC is250

attractive for constrained environments as its smaller key sizes result in savings for power, memory,251

bandwidth and computational cost [? ]. For example, a 256 to 383 bit ECC key is considered252

comparable in strength to a 3072 bit RSA key by NIST [? ]. CoAP mandates the use of the253

‘TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8’ cipher suite for X.509 certificates in constrained254

environments. This cipher suite uses the secp256r1 or NIST P-256 elliptic curve.255

3. Problem statement and research goals256

When securing communications in LLNs via end-to-end security with DTLS, one should be257

mindful of a number of potential issues and pitfalls. Some of these issues arise due to the limitations258

of the constrained devices that secure the communications. For example in end-to-end security, there259

is a considerable difference between constrained devices (and their protocols) and powerful Internet260

hosts (and their protocols) in terms of available resources and design. A second potential issue stems261

from the DTLS protocol itself, namely the large overhead of the DTLS handshake can be an issue of262

concern in constrained networks. A third group of issues is related to securing the LLN itself and is263

the result of deploying end-to-end security in LLNs. Apart from these issues related to end-to-end264

security in LLNs, there is also the problem of the limited amount of application layer functionality265

that can be provided by constrained IoT devices. In a world as heterogeneous as the IoT there266

exists a need for protocol translation, data format mapping, semantic descriptions and many other267

features that improve the interoperability with IoT devices. Similarly, network access to constrained268

nodes and LLNs should be as efficient as possible by supporting caching of information, efficient269

discovery and network edge filtering. These types of functionality are too complex and in some cases270

impossible for implementation on a constrained device. Clearly, an approach that does not burden271

the constrained device is needed in this case. The remainder of this section discusses these various272

issues and problems in more detail.273

3.1. End-to-end security in LLNs274

Constrained devices with a limited power source (e.g. battery powered or energy scavenging275

devices) should take care to avoid excessive network communications in order not to preemptively276

deplete the power source. Similarly, constrained networks where the available throughput is in the277

order of a few kbps, should minimize the amount of network communications to avoid congestion.278

Therefore chatty or verbose security protocols that communicate excessive amounts of information279

should be avoided in these situations. As DTLS employs UDP instead of TCP as its transport protocol,280

it avoids the TCP handshake which reduces the number of messages exchanged between DTLS clients281

and servers. However, some options supported by DTLS, as presented in the previous section, may282

lead to large amounts network communications. Specifically, certificate-based cipher suites involve283

sending the certificate of the DTLS server (and peer, depending on the security needs) over the284

network. These certificates are generally large (i.e. thousand bytes and more) and therefore their285
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network communication can be problematic when communication has a large impact on the power286

source or the network. As a result, these types of devices are unable to offer authentication based on287

PKI certificates. While raw public keys are significantly more compact than X.509 certificates, they do288

not offer the same benefits in terms of authentication and scalability.289

For devices with limited computational power (e.g. low cost embedded systems) certain290

cryptographic primitives may proof too complex for computation by the low cost microcontroller.291

While hardware acceleration may help to alleviate this issue, it can be an expensive option and might292

only be available for certain primitives: e.g. AES is often accelerated in hardware, while others are not.293

Specifically, public-key cryptography methods (e.g. based on large integer factorization or discrete294

logarithm problems) and key agreement schemes (such as (EC)DH) may be too taxing for constrained295

microcontrollers. Therefore, the set of cryptographic functions that can be offered by such low cost296

embedded systems excludes a number of common cryptographic primitives and is typically limited297

to what can be achieved by symmetric-key cryptography.298

Another important limitation in constrained environments is the low amount of available299

memory (i.e. both volatile and non-volatile memory). For example, according to IETF RFC 7228 [?300

] Class 1 constrained devices have around 10KiB of RAM and 100KiB of ROM memory. Such301

a small amount of memory must accommodate an entire networking stack, adequate security302

mechanisms, peripheral control, the application itself and various other subsystems. This forces303

a device manufacturer to limit the amount of software that will ship with the device by carefully304

selecting what is needed. One consequence is that it is impossible for these devices to support a wide305

range of DTLS extensions and cipher suites (e.g. only one suite might be supported). This also means306

that verbose operations such as checking certificate revocation lists or performing OCSP [? ] checks307

typically can not be supported.308

Powerful Internet hosts on the other hand may expect constrained devices to support security309

features similar to those found on the conventional Internet (e.g. with strong authentication and key310

agreement schemes). As constrained devices can not support these features (see above), an alternative311

is to consider third party systems (e.g. middleboxes or off-path systems) that offer such features on312

behalf of constrained devices. However, in this case a big issue with conventional end-to-end security313

is that as the connection is secured end-to-end, a third party is excluded from the communication.314

Thus, an important question addressed by this work is how third parties can take part in securing (but315

also optimizing, see later) communications with constrained devices in order to bridge the gap with316

powerful Internet hosts.317

While DTLS can avoid the TCP handshake, it still has to perform its own handshaking318

mechanism in order to negotiate key exchange and authentication methods. The overhead of this319

handshake in terms of delay or amount of network traffic can be problematic for some types of320

constrained nodes and networks. Specifically, previous research has shown that in duty-cycled321

multi-hop networks the delay introduced by the DTLS handshake can run up to fifty second [? ]322

for 4 wireless hops. The authors also correctly conclude that the memory for storing DTLS session323

state on constrained nodes is typically limited to a handful of nodes for Class 1 devices. Additionally,324

other research [? ] has shown that ephemeral DTLS sessions with constrained devices should be325

avoided as their energy expenditure is up to 60% higher when compared to a single DTLS session326

with a long lifetime. Therefore, one goal of this work is to limit the impact of the DTLS handshake327

on delay and energy expenditure, while supporting more than just a handful of simultaneous DTLS328

sessions per constrained device.329

The third group of issues stems from naively deploying end-to-end security in (multi hop) low330

power and lossy networks (LLNs) and from allowing unmonitored access to LLNs to malicious331

users. In these networks resources are sparse (see above) and care should be taken in order to332

avoid unwanted depletion of these resources by denial-of-service (DoS) attacks. For example, by333

repeatedly opening and closing DTLS sessions a malicious user can significantly reduce the lifetime334

of a battery-powered device. A malicious user could also send large datagrams to the LLN, which335
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will trigger fragmentation that can exhaust the allocated network buffers in the LLNs. Most of336

these resource-depletion threats can be mitigated by monitoring and restricting access to the LLN337

at the edge of the network, where an unconstrained firewall or gateway system resides. However,338

end-to-end security encumbers such systems from authenticating parties (as constrained devices can339

not support strong authentication) and therefore restricting access to authorized parties. Here, this340

work will study how end-to-end security can be reconciled with the need for traffic filtering at the341

edge of the network and the need for strong authentication.342

3.2. Complex application features in LLNs343

Apart from security issues, there is another important category of problems that relate to344

functionality at the application layer for constrained devices which is targeted by this work. Firstly,345

the same constraints that prohibit offering extensive security features also apply to implementing346

application features on the constrained device. This is one of the reasons why the IETF has347

standardized special purpose protocols and data formats for use in constrained environments (e.g.348

CoAP and CoRE link format [? ]). However, traditional Internet hosts do not always implement349

these protocols and data formats. In these cases a protocol and data format translation should occur350

that enables the Internet host to communicate with the constrained device (e.g. an HTTP/CoAP351

proxy and a JSON/CLF mapper). Such a translation has to be performed by an unconstrained third352

party system (e.g. gateway). Secondly, some types of functionality can be ineffective when they353

are offered on the constrained device. An example is caching the responses of a constrained server354

on the device itself which will not save any network traffic. A second example is the aggregation355

of observe relationships by intermediaries, clearly this has to be offered on an intermediary and356

not on a constrained node in order to have any effect. Note that conventional end-to-end security357

does not allow for response caching or observe aggregation, as all traffic passing at an intermediary358

is encrypted. Thirdly, some functionality can be inefficient when they are implemented on the359

constrained device. An example is storing verbose semantic descriptions on a constrained device360

which will lead to significant amounts of network traffic every time these descriptions are requested.361

Another example of functionality that is inefficient to offer on constrained devices is access control.362

Typically the LLN will have already spent a significant amount of resources delivering the request363

to its destination where it will end up being discarded. Clearly, discarding this request before the364

network has wasted its resources is more efficient. For these cases, this work will study how third365

party systems can support and optimize the operations of constrained devices and LLNs.366

3.3. Problem statement: illustration in a smart building use case367

Figure ?? shows a smart building scenario that illustrates the problems targeted by this work. In a368

smart building most of the building services can be monitored and controlled over the Internet. Such369

services include for example the management of doors, lighting, climate control (e.g. AC), elevators370

and the monitoring of presence in certain areas. Smart buildings, such as offices and public buildings,371

typically have a large variety of users: visitors, cleaning staff, technicians, employees, etc. Similarly372

there are also a number of computer systems that interact with the smart building: e.g. systems for373

HVAC, surveillance, facility management, etc. Each of these actors access the services offered by the374

building according to specific access control rules that depend on the role and or identify of the actor.375

E.g. the HVAC system can control the air conditioning units, but can not control the doors. However,376

the HVAC system might be allowed to monitor the status of a door adjacent of an AC unit without377

being able to (un)lock it. Considering the limited resources of constrained devices (see above),378

managing and enforcing which actions an actor is allowed to perform depending on their role or379

identity quickly becomes too complex for the constrained devices. Furthermore, as most constrained380

devices only support PSK-based authentication such a system would require management of shared381

secret keys between every two actors. Limitations on the LLN and the constrained devices also382

prohibit these devices from offering protocols and data formats that are common to the unconstrained383
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Figure 3. In a smart building scenario there is a wide variety of different users. Constrained devices
are unable to offer all necessary security and application features to cater to these users. In the
approach followed by this work, unconstrained systems (e.g. border routers) assist by offering these
missing features.

actors, such as HTTP(S) and XML/JSON. The gray center of the figure already hints at our approach384

detailed in the next section: a proxy offers many of the missing features on behalf of the constrained385

devices.386

Finally, one might question why this work relies on end-to-end security via DTLS at all, when387

there appear to be many problems in constrained environments according to the discussion above.388

Our main motivations for doing so is that DTLS is a proven (and secure) standard, is widely available,389

is commonly used on the Web and is standardized for use with CoAP. Alternatives to DTLS, are either390

proprietary or still in the process of standardization (e.g. OSCOAP [? ]), not applicable to constrained391

environments (e.g. network layer security) or can not provide the same level of security as DTLS (e.g.392

physical layer security). Object security specifically can be considered complementary to transport393

layer security and while it is not considered in this work, it can be combined with the work presented394

here (if feasible given the constrained environments under consideration). The related work section395

discusses object security in greater detail. While literature shows that lightweight network security396

is feasible in constrained environments (e.g. compressed IPsec [? ]), it is not considered in this work397

because CoAP standardized end-to-end security over DTLS as its security mechanism.398

4. The Secure Service Proxy399

The approach followed in this work allocates one reverse CoAP(s) proxy per constrained device.400

The CoAP specification [? ] defines a reverse proxy as “an endpoint that stands in for one or401

more other server(s) and satisfies requests on behalf of these, doing any necessary translations” and402

it also states that “The client may not be aware that it is communicating with a reverse-proxy; a403

reverse-proxy receives requests as if it were the origin server for the target resource.” The reverse404

proxy approach enables splitting the end-to-end communication between a constrained device and405

its client at the proxy with no need for any additional configuration on the client (as mentioned in the406

CoAP specification). While the resulting communication is no longer end-to-end, indeed the proxy407

will share DTLS security contexts with both parties and will translate CoAP messages, the resulting408

system has a lot of benefits and is able to overcome all of the issues that are discussed in the previous409

section. Additionally, our reverse proxy approach implements a virtual device for every constrained410

device. This enables the reverse proxy to extend a constrained device (beyond only proxying) by411
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hosting functionality on the corresponding virtual device. Finally, by enabling the reverse proxy to412

be deployed on any system (see design), it is not restricted by the limitations common to constrained413

IoT devices. In the next subsections we argue that the benefits of this approach far outweigh the414

downsides of splitting the end-to-end communication and we present our design for such a reverse415

proxy.416

4.1. Motivation of approach417

Our motivation for following a reverse proxy approach consists of two facets: one for the418

security related aspects of constrained devices and LLNs and one for the application layer related419

aspects of constrained devices. In terms of security, the reverse proxy approach allows to setup two420

sorts of DTLS sessions: “lightweight” sessions between the constrained devices and their reverse421

proxy and fully featured sessions between the proxy and the clients of the devices. The lightweight422

sessions employ security primitives that are known to the constrained devices (e.g. pre-shared423

keys for authentication and key exchange), while the fully featured sessions can use conventional424

security methods that are known to the clients: e.g. certificates for strong authentication and (Elliptic425

Curve) Diffie-Hellman (ECDH) for the key exchange (including ephemeral key exchanges if perfect426

forward secrecy is required). Additionally, the reverse proxy can be configured to maintain one427

long-term session with the constrained device while simultaneously keeping active sessions with428

multiple clients. This allows to overcome the small session pool at the constrained devices (due to429

its limited memory, see above) as well as limit the total number of handshakes performed by the430

constrained device during its lifetime. As a result, the impact of the DTLS handshake on the LLN431

and the communication in terms of e.g traffic and communication latency is lowered. Finally, the432

reverse proxy also protects the LLN from a number of resource depletion attacks from attackers on433

the Internet. By design a reverse proxy handles all messages for all constrained devices in a LLN from434

Internet hosts. Thus, the reverse proxy becomes the main traffic entry point for the LLN and therefore435

it can inspect, filter and drop traffic in order to root out traffic from malicious users. Combined with436

the strong authentication of clients and an access control policy, this proxy can make more informed437

decisions in regards to filtering traffic when compared to e.g. a simple Internet firewall.438

In terms of the application layer, a reverse proxy is free to process and transform the requests439

it receives from clients as it chooses. A reverse proxy can improve network access by offering440

features such as caching, network-edge access control and enforcing congestion control algorithms.441

Interoperability with other systems can be increased by e.g. translating between HTTP and CoAP,442

which is fairly straightforward considering the design goals of CoAP. Translation between different443

data types (e.g. Core link format [? ] to JSON) can also boost interoperability. Such a proxy can also444

implement additional application functionality on behalf of the constrained device. Examples of such445

functionality include extending the constrained device with semantic descriptions for its resources,446

a deployment location photo, the weather near the device, etc. Additionally, a proxy can choose447

to facilitate adding, configuring and deploying such functionality via a plugin-like system. This448

greatly easies management of such functionality at run time by making adding, updating, enabling449

and disabling such functionality easier.450

It is important to reiterate that all of the above is possible without any additional configuration on451

either the constrained device or the client. Nor does the presented approach require any modifications452

to the standards compliant protocol stacks (e.g. 6LoWPAN/DTLS/CoAP) running on the constrained453

device and the client. Indeed, the client discovers the Internet endpoint of the constrained device454

that is hosted on the proxy and the proxy takes care of mapping every request to the corresponding455

constrained device. In the scenario presented here, all configuration is limited to the proxy. These last456

two benefits are an important differentiator from existing work, as will be discussed in the related457

work section.458

While the reverse proxy approach offers a number of benefits, it also entails some risks that459

if ignored might undermine the presented system. One risk is that the reverse proxy presents a460
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single point of failure in terms of security and operation. Indeed, if the reverse proxy were to be461

compromised then e.g. all session keys and long-term keying material (pre-shared keys and private462

keys) could be made public. As the proxy offers a RESTful interface for managing virtual hosts and463

their keying material, this interface entails a security risk and should therefore be properly hardened464

against malicious usage (see section ?? for suggestions). Likewise, if the reverse proxy were to be the465

target of a resource depletion attack, then the constrained devices hosted by that proxy would become466

unreachable. On the other hand, as the proxy is deployed on a more powerful system, the proxy is467

more resilient to resource depletion attacks than constrained devices and networks. A second issue468

is the introduction of a third party (i.e. the proxy itself) into the trust model by terminating the469

end-to-end security that must be trusted by both the constrained device as well as the clients. As470

all collected data and issued commands pass via the proxy, this can raise privacy concerns when the471

device or the client does not trust the owner of the proxy. One option to mitigate this privacy risk is472

to let the owner of the constrained devices operate the reverse proxy on his or her own. To this end,473

our evaluation shows that a low-cost single board computer (e.g. Raspberry Pi) is capable of hosting474

the proxy, which enables on-premises deployments. To summarize, the proxy breaks end-to-end475

security in order to provide additional features which address operational and performance concerns476

of resource constrained devices. This work argues that the benefits of terminating the end-to-end477

security outweigh the security-related risks in the case of ‘Class 1’ resource constrained devices and478

networks. For less constrained devices and networks, this balance might tip in favor of end-to-end479

security.480

4.2. Secure Service Proxy: design481

In order to enable our proxy to extend constrained devices with a wide range of functionality,482

the design adopts the concept of virtual devices. In our design every virtual device is allocated a483

dedicated IPv6 address from an IPv6 subnet that is either routed to the proxy or directly connected484

to the proxy. Every virtual device has one or more endpoints associated with it. An endpoint485

corresponds to a transport and application layer binding: e.g. UDP/CoAP, DTLS/CoAP, TCP/HTTP486

or TLS/HTTP. For every virtual device the proxy listens for traffic on each of its endpoints, this is487

shown in the bottom left of figure ??.488
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Figure 4. Secure Service Proxy: design

The transport layer security block is responsible for handling the (D)TLS protocol for secure489

endpoints on behalf of virtual devices. As such this block performs (D)TLS handshakes, thereby490

authenticating the client and performing a key exchange. To this end the block interfaces with the491
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virtual device configuration (top right in the figure) to retrieve the TLS parameters that are configured492

for the virtual device. These parameters include a list of available cipher suites and keying material493

for the secure endpoint of the virtual device as well as whether the virtual device requires clients494

to authenticate themselves. Apart from the handshake, this block is responsible for tracking active495

sessions with virtual devices (via the sessions store). It also decrypts and verifies incoming (D)TLS496

application data messages, which are passed on to the adapter execution block, as well as encrypts497

outgoing application data that comes from the adapter block. The keying material and the protocol498

state used in the encryption and verification process naturally depends on the endpoint involved.499

Incoming messages contain (secured) requests which are either HTTP or CoAP requests. While500

our design supports adapters for both application layer protocols, we foresee that HTTP requests will501

almost always be translated immediately to a CoAP request. As such we do not expect virtual devices502

to host only an HTTP endpoint (although the design does support this). When the application layer503

adapter execution block receives a request, it will search through the tree of available adapter chains504

to search for a chain that is the most specific match for the request. The current implementation505

supports searching based on the address and endpoint of the virtual device as well as the URI of the506

request.507

Once a chain has been found the execution block will pass the request along the chain. Every508

element of the chain (i.e. an adapter) can either return (a modified) the request, which will be passed509

to the next adapter in the chain, or stop the execution of the chain by returning a response. The current510

implementation allows returning a response from an adapter in a non-blocking (i.e. asynchronous)511

way, as retrieving a response might involve a lengthy IO operation. Once the response is available,512

it is passed along the chain in reverse. This allows adapters to process and (if needed) modify the513

response before it is stored in the virtual device and returned to the client.514

Application layer adapters implement the functionality hosted by virtual devices. The idea515

underlying adapters is to compartmentalize functionality into modules that can be reused by virtual516

devices. When creating an adapter chain, an instance for every adapter in the chain is created and517

every instance is configured according to the parameters exposed by the adapter type (see further).518

While instances of adapters reside in adapter chains, they can be shared by more than one adapter519

chain. For example in figure ?? the same Static adapter instance (colored orange) is shared by AC1 and520

AC3. This is mainly useful when the same functionality should be available for multiple endpoints521

of the same virtual device (e.g. CoAP and CoAPs) or when an adapter implements functionality522

that does not require configuration that differs per adapter chain (e.g. a logging adapter that logs all523

incoming requests for auditing purposes).524

The proxy also exposes a networked interface in the form of a REST API to manage virtual525

devices, which is shown in the bottom right of figure ??. The REST API allows creating and deleting526

virtual devices and their endpoints, as well as instancing and deleting adapters and defining adapter527

chains. When creating (D)TLS endpoints the REST API also allows specifying the cipher suites528

supported by the virtual device, as well as the keying material (e.g. X.509 certificate or private key).529

Apart from the management interface, the proxy also hosts a resource directory that contains the530

hosted virtual devices. Finally, a mirror server is also available to enable resource updates from531

constrained devices that are asleep for continuous and long periods of time (i.e. sleepy devices).532

This mirror server can be used by virtual devices to interface with resources from sleepy constrained533

devices.534

Finally, the presented design allows to deploy the proxy on different locations in the network by535

varying the IPv6 subnet for the allocation of virtual device IPv6 addresses. We foresee two scenarios.536

In a first scenario, the proxy resides close to the constrained devices by allocating addresses from537

a neighboring LAN network to virtual devices. An example would be a home LAN network from538

which the proxy assigns unused addresses to virtual devices. In the case of a 6LoWPAN network,539

the proxy can be combined with the border router. This scenario also aligns nicely to the distributed540

computing concept that is commonly found in fog computing and in in-network processing [? ]. In541
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a second scenario, the proxy resides further ‘upstream’ from the constrained devices (e.g. in a data542

center, the cloud, etc.) and allocates addresses from a special-purpose IPv6 subnet that is dedicated543

to virtual devices. In this scenario, the routing has to be configured to route this special-purpose IPv6544

subnet via the proxy (which is not a problem in most data centers). Both scenarios are complementary545

and will depend on the specific needs of the considered use-case: e.g. a proxy in the LAN network546

means that data stays inside the home network, which may benefit privacy. Similar considerations547

were previously discussed in the problem statement section.548

4.3. Secure Service Proxy: implementation549

For the implementation of our secure service proxy, we chose to build upon the previous work550

in our CoAP++ framework (which in turn builds on top of the Click modular router software). This551

choice provides a great amount of flexibility in how we process the network traffic for the virtual (and552

constrained) devices, as all routing functions are part of Click and can therefore be configured to our553

liking. In terms of the (D)TLS implementation we chose to use the wolfSSL library as this offers the554

easiest API for managing sessions and integrating into Click router where most processing happens555

on network packets.556

4.3.1. Virtual devices and endpoints557

Virtual device endpoints are created and deleted via the management interface. This is a558

straightforward REST interface that is hosted on the secure service proxy over CoAPs. As this559

interface handles sensitive information such as keying material, access is restricted to authorized560

users which are allowed to manage endpoints and adapter chains.561

POST requests with an endpoint description are used to create a new endpoint for a virtual562

device. The endpoint description contains both the virtual device to which the endpoint belongs as563

well as any configuration details describing the endpoint itself. This description is serialized as a564

JSON object in the payload of the POST request. For a plain-text CoAP endpoint, the configuration565

details are limited to the UDP transport port of the endpoint. For a DTLS CoAPs endpoint, the566

configuration also includes information about the supported cipher suites and any parameters for567

the cipher suites. In the current implementation, the “TLS_PSK_WITH_AES_128_CCM_8” and568

“TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8” cipher suites are supported for CoAPs endpoints.569

When creating an endpoint that supports the PSK cipher suite, the pre-shared-key and an (optional)570

client identity hint have to be specified as parameters. For the elliptic curve DSA suite, the secp256r1571

private key and signed certificate have to be provided as parameters. These are both encoded in572

base64 in the endpoint description. The following listing contains an example POST request that573

creates a CoAPs endpoint for a virtual device hosted under 2001:6a8:1d80:23::1 on port 5684 with an574

ECC cipher suite.575

POST /virtualDevices576

Content-Format: application/json577

{578

"address": "2001:6a8:1d80:23::1",579

"prefixLen": 128,580

"port": 5684,581

"dtls": {582

"supportedCipherSuites": [583

{584

"cipherSuite": "TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8",585

"parameters": {586

"b64PrivateKey": "QVNO...==",587

"b64Certificate": "LS0t...=="588

}589

}590

]591

}592

}593

594

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684595
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The response of the secure service proxy links to a newly-created resource that can be used to596

the delete the endpoint at a later time. This resource is also used for managing the adapter chains that597

belong to an endpoint, as explained in section ??.598

4.3.2. Implemented application layer adapters599

In terms of application layer adapters, our proxy currently implements the adapters listed in600

table ??. This section describes each of the adapter types in more detail.601

Table 1. The proxy offers a number of functionalities, called adapters, that are hosted on virtual
devices. The list of adapters that were implemented at the time of this work are shown in this table.

Adapter Functionality Configuration parameters

Access control
Restrict access to virtual devices depending on
client identify, request method and URI. ACL rules and default policy

Static resource
Host RESTful resources on virtual devices
that can be read and modified. Payload and content type

Cache
Cache and serve previous responses from
virtual devices to clients. Default cache entry lifetime

Congestion control
Enforce congestion control on clients querying
virtual devices. Per device and network wide
rules are implemented.

Per user CC limits

.well-known/core
Manipulate discovery responses from virtual
devices to include functionality hosted by
the proxy.

None

Proxy
Proxies requests for the virtual device to a
CoAP(s) server (e.g. the constrained device).
Also aggregates observe registrations.

CoAP(s) server endpoint

Mirror server
Proxies requests for a virtual device to a
mirror server.

Mirror server endpoint and
sleepy device anchor point

The access control adapter applies ACL rules to the CoAP(s) requests it processes. ACL rules are602

parsed as JSON objects that assign allow and deny rules to either a username or a role of users. An603

allow and deny rule consist of a regular expression, which is applied to the request URI, and a list604

of request methods. In case no matching ACL rule is found, then the default policy of the adapter605

instance (either accept or deny) is applied. The following JSON serialization of an example ACL rule606

gives bob full access to the devicename resource while access to the lock resource is restricted to read607

only.608

{"username": "bob",609

"allow": [{"uri-regex":"devicename", "methods":["GET", "PUT", "POST", "DELETE"]},610

{"uri-regex":"lock", "methods":["GET"]}],611

"deny": []}612

Hosting a virtual resource on a virtual device is the task of the static resource adapter. In order613

to allow arbitrary content types of the payload, the value of the virtual resource is encoded in base64614

in the configuration of the adapter. An example is shown in the next section.615

The cache adapter serves and caches responses for requests to virtual devices. The cache adapter616

calculates a cache key for every CoAP request it handles. When a fresh response matching the617

cache-key is found, the adapter chain’s execution is halted and the cached response traverses the618

adapter chain in reverse. Responses processed by the cache adapter are handled in accordance with619

section 5.9 of the CoAP RFC [? ]. This means that e.g. a ‘2.05 Content’ response will be cached, while620

a ‘2.04 Changed’ response will mark any stored response as not fresh. Cached responses are removed621

when they expire after their Max-Age option. Note that the cache adapter does not implement the622

‘Validation Model’ specified in section 5.6.2. of the CoAP RFC. When used in conjunction with access623

control it is important that all ACL rules are applied before hitting the cache, as the execution of the624



Version July 6, 2017 submitted to Sensors 16 of ??

request leg of the adapter chain will stop when a cache hit is found. The underlying implementation625

caches responses in memory via a memcached instance.626

The congestion control adapter in its current form applies traffic shaping on a per host basis.627

Currently it is possible to limit the number of open requests between a client and a specific virtual628

device and between a client and a group of virtual devices 1. Open requests are requests for which a629

response has not been sent yet. If a client reaches its limit, then the request is dropped until either a630

response is received or one of the prior requests of that client is removed after a time out period (can631

be configured). Finally, a client can either be identified by its endpoint address or by its identity632

derived from the authentication credentials during the (D)TLS handshake.633

The .well-known/core adapter is responsible for including the functionality that is hosted on634

the virtual devices in the resource discovery responses of the real constrained device. In the current635

implementation, the wkc adapter asks every adapter from all the adapter chains that are defined636

for the virtual device to modify the discovery response from the real device. This way the static637

resource adapter can add a link to its virtual resource and the ACL adapter can remove links638

for resources that the user is not authorized to access. To this end, every adapter type offers a639

“processDiscoveryResponse” method that is used by the wkc adapter.640

The proxy adapter takes a request for a virtual device and issues a new CoAP request to the641

corresponding actual constrained device. Therefore an instance of this adapter is configured with642

the CoAP(s) endpoint of the constrained device. Only the transport layer addresses are changed,643

the new CoAP request is copied from the output of the previous adapter in the adapter chain (with644

the exception of the Message ID and the Token of course). The proxy adapter will either retrieve a645

response or generate a time-out, therefore it always comes last in adapter chains. This adapter will646

also combine observe registrations when it receives multiple registrations for the same resource on a647

virtual device. Likewise it also multiplexes responses from constrained devices to multiple clients in648

case there is more than one ongoing observe registration.649

Finally, the mirror server adapter is a special type of proxy adapter in that it issues CoAP(s)650

requests to a mirror server instead of the constrained device itself. Apart from the end point of the651

mirror server, also the handler of the constrained device is configured into the mirror server adapter652

instance. For instance a request to the coaps://vd1.iot.test/status resource on a virtual device would653

be translated to coaps://ms.iot.test/ms/0/status.654

4.3.3. Adapter chain management: interface655

Once an endpoint for a virtual host has been allocated on the proxy, adapter chains can be656

created and hosted on that endpoint. Building on our previous example, the listing below contains657

a CoAP request that instantiates an adapter chain which contains the access control, well-known658

core rewriting, caching and forward CoAPs proxy adapters. Again, the payload is a JSON object659

that describes the chain and contains the parameters for the different adapter instances. The adapter660

chain is created as the default chain via the wildcard character in the chain path. The default chain is661

executed for requests where no other adapter chains with a matching URI path are found.662

POST /virtualDevices/2001:6a8:1d80:23::1~128~5684663

Content-Format: application/json664

{665

"path": "/*",666

"pipeline": [667

{668

"type": "acl",669

"default_access_control_policy": "deny",670

"rules": [671

{"username": "fvdabeele", "rules": [{"uri-regex":"regex1", "allowMethods":["*"]},672

{"uri-regex":"regex2", "allowMethods":["GET"]}]},673

1 The group encompasses all virtual devices with an adapter chain that share the same CC adapter instance.
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{"username": "*", "rules": [{"uri-regex":"regex1", "denyMethods":["*"]},674

{"uri-regex":"regex2", "allowMethods":["GET"]}]}675

]676

},677

{678

"type": "wkc"679

},680

{681

"type": "cache",682

"default_lifetime": 60683

},684

{685

"type": "proxy",686

"scheme": "coaps",687

"addr": "bbbb::1",688

"port": 5684689

}690

]691

}692

693

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684/*694

The second example, shown in the listing below, details how a static resource is created on the695

endpoint of our virtual host (in this case it contains a semantic description of the virtual host in the696

RDF format). The chain also illustrates the linked adapter, which refers to the acl adapter instance697

that was created in the previous listing. The link points to the management resource of the adapter698

instance.699

POST /virtualDevices/2001:6a8:1d80:23::1~128~5684700

Content-Format: application/json701

{702

"path": "/rdf",703

"pipeline": [704

{705

"type": "linkedAdapter",706

"link": "/virtualDevices/2001:6a8:1d80:23::1~128~5684/*/0"707

},708

{709

"type": "static",710

"contentType": 41,711

"value": "PGh0d...=="712

}713

]714

}715

716

2.01 Created /virtualDevices/2001:6a8:1d80:23::1~128~5684/rdf717

Finally, note that the parameters of existing adapters can be updated via a PUT request to the718

management resource of the adapter instance. In this case the payload is a JSON object where the719

keys are the parameter names. Likewise, adapters and chains can be deleted via their respective720

management resources.721

4.3.4. Authenticating (D)TLS clients on the SSP722

In order to facilitate authentication of users and authorization of user actions, the SSP links client723

authentication information (e.g. TLS PSK or X.509 client certificate) with users and roles. The current724

implementation is limited to using TLS primitives for supplying authentication credentials, although725

in the future alternatives might be considered (e.g. lightweight application-layer access tokens). For726

example, a (D)TLS session that was setup with PSK1 as the pre-shared key can be linked with userA.727

Likewise attributes in a client X.509 certificate that is signed by a party trusted by the SSP can be728

linked with a specific user. E.g. a certificate issued by CAA with the common name attribute set to729

fvdabeele can be linked with userB. Finally, the proxy also exposes a RESTful interface for managing730

which credentials belong to which user and the roles of users.731



Version July 6, 2017 submitted to Sensors 18 of ??

4.3.5. Key management between SSP and constrained devices732

The SSP contains an in-memory repository of pre-shared keys and corresponding identity733

hints in order to setup DTLS sessions with resource-constrained CoAPs servers. As this repository734

contains all the keying material for the constrained devices known to the proxy, it contains sensitive735

information and should be handled accordingly. In the current implementation this repository is736

initialized when the SSP process is started. A future extension could enable at run-time manipulation737

of this repository by, for example, specifying keying material when instantiating coaps proxy738

adapters. Currently this has not yet been implemented, as in our use cases this repository does not739

change frequently and remains stable. In use cases where the repository is more volatile, such an740

extension could enable better key management.741

5. Related work742

The concept of device virtualization in the IoT is widespread in literature, though often times743

under different names such as sensor, thing and object virtualization. Indeed, in [? ] the authors744

present a survey on object virtualization in the IoT stating that “the concept has become a major745

component of current IoT platforms where it aids in improving object energy management efficiency746

and addressing heterogeneity and scalability issues”. The authors classify existing architectures as747

one or many real objects for one or many virtual objects. While the focus in this work has been on one748

real object for one virtual object, the flexibility of the presented design enables the same adapter to be749

shared by multiple virtual devices as well as one virtual device to span multiple physical devices (for750

example a virtual device combining all lamps in a room).751

There exist numerous works in literature that study the benefits of using third parties or752

intermediaries in constrained environments. In order to narrow the scope of this section, only works753

that are relevant in the context of constrained RESTful environments are discussed here. In [? ],754

Kovatsch et al. discuss moving application logic from firmware to the cloud. According to the vision755

of the authors devices are thin servers exposing RESTful resources for data access and actuation756

and most of the application logic would reside in application servers. While our approach also757

advocates thin servers for devices, deploying the SSP in the cloud is optional. In use-cases where758

local access is important, the SSP may reside closer to the devices (e.g. deployed in the LAN) in759

order to meet requirements in respect to latency, privacy or availability. Additionally, the SSP may760

support constrained nodes and applications servers by providing functionality such as caching and761

more scalable authentication and authorization. The IPv6 addressing proxy presented in [? ] is an762

example of an intermediary system for mapping legacy technologies to the IPv6 Internet of Things.763

By allocating IPv6 addresses to map to different legacy technologies, the approach is similar to the764

virtual devices presented in our work. Note that the adapter concept provides the flexibility to map765

virtual devices to different technologies similar to the work in [? ]. While not presented in this work,766

the SSP has been used to host LoRaWAN end devices as virtual IPv6 CoAP endpoints via an AMQP767

pub/sub adapter that interfaced with the LoRaWAN network server. The authors in [? ] propose768

to interconnect web applications based on HTTP and web sockets with CoAP-based wireless sensor769

networks via a CoAP proxy. The CoAP proxy focuses on translating between different protocols770

and closely follows the guidelines outlined in RFC 8075 [? ]. The scope of the SSP is broader as it771

includes transport security, access and congestion control next to mapping HTTP to CoAP. Finally,772

note that the forward proxy approach of Ludovici differs from the reverse proxy approach of the773

SSP. In [? ], Mongozzi et al. introduce a framework for CoAP proxy virtualization in order to774

address the scalability and heterogeneity challenges faced in large-scale Web of Things deployments.775

The framework installs a reverse CoAP proxy on the sensor network gateway and then applies776

virtualization so that the proxy can be customized and extended by third parties without modifying777

the reverse proxy. All interactions of these virtual proxies with smart objects pass via this reverse778

proxy, which acts as an arbiter for access to the limited resources of the smart objects. The presented779

approach is interesting as the containerization of the virtual proxies into virtual machines makes them780
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more flexible than the adapter approach followed in the SSP. We have experimented with providing781

some degree of extensibility by creating adapters from python scripts in the SSP (these scripts could782

be uploaded via the adapter chain management interface). While this python adapter type provided783

some degree of customization, the lack of proper process isolation meant that (malicious) scripts784

could stall the SSP. As such, these python adapters did not make the final SSP design. While the785

concept of the virtual proxies is interesting, the extent of the work is limited as the focus lies on the786

virtualization technique and interesting features such as scalable security and efficient and authorized787

network access are not considered. Instead the authors focus on providing service differentiation788

between multiple virtual proxies. Also note that proxy virtualization is not the same concept as789

device virtualization, though they can be used to solve similar problems. The same authors of [? ]790

look at the specific problem of proxying CoAP observe efficiently for different QoS requirements in [?791

]. While the scope of the work is quite different from this paper, the use of a reverse proxy for bundling792

observe relationships is shared between the two works. Another example of device virtualization in793

RESTful environment is [? ], where the authors assign virtual coap servers to RFID tags. The actual794

CoAP servers are not running on the tags though. Instead they reside on RFID readers, which are795

able to enhance tags with additional functionality (such as discovery). This work has parallels with796

the SSP, which enhances constrained devices by means of application layer adapters.797

A second category of relevant works in literature studies the challenges faced by transport798

layer security in constrained IoT environments. There are a number of works that study the DTLS799

handshake as it is fairly complex and verbose process with significant resources requirements for800

constrained devices. In [? ] Hummen et al. propose a delegation architecture that offloads801

the expensive DTLS connection establishment to a delegation server thereby reducing the resource802

requirements of constrained devices. The delegation architecture also enables more complex803

authorization schemes, as it has more resources at its disposal. The authors report significant804

reductions on memory overhead, computations and network transmissions on constrained devices.805

Our termination method can also provide complex authorization schemes of the virtual device.806

In section ?? we have also reported significant savings in regards to CPU and network resource807

usage (and consequently energy usage). While our approach still requires an active DTLS session808

between the SSP and the constrained device, the number of handshakes during the lifetime of a device809

is drastically reduced. While the memory requirements are not as low as in [? ], they are still lowered810

as the constrained device can limit the number of simultaneous sessions to one. Finally note that our811

approach does not require any changes to the DTLS stack running on the device. The work in [? ]812

focuses on various challenges in deploying DTLS in resource constrained environments. Similarly813

to [? ], the approach revolves around handshake delegation. The authors adopt the concept of secure814

virtual things in the cloud where physical things delegate the session initiation to their corresponding815

virtual thing. As a result physical things can limit their DTLS implementation to only the record816

layer protocol, which leads to drastic memory savings. One interesting aspect of the presented817

architecture is that the physical thing can assume both roles of client and server. Unfortunately the818

concept of virtual things is not extended beyond the handshake delegation mechanism. It would be819

interesting to combine a delegation mechanism with some of the findings presented in our work. A820

hybrid option would be possible where the delegation mechanism is used for the most constrained821

devices (requiring a custom lightweight DTLS stack) and where the termination mechanism can be822

used for devices with sufficient memory (i.e. where a full DTLS stack is feasible) or where the DTLS823

stack can not be customized to implement the delegation method.824

Object Security of CoAP (OSCOAP) [? ] is an IETF Internet Draft standardizing end-to-end825

security of CoAP options and payload at the application layer. While the specification focuses826

on the forwarding case when using a forward proxy (which excludes caching), it does include an827

appendix describing a mode of operation, Object Security of Content (OSCON), which is compatible828

with caching responses at intermediaries. The draft notes that OSCOAP may be used in extremely829

constrained settings, where CoAP over DTLS may be prohibitive e.g. due to large code size.830
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Nevertheless, the authors state that OSCOAP may be combined with DTLS, thereby benefiting from831

the additional protection of the CoAP message layer present in DTLS-based security. Note that the832

standardization efforts focus on the case of a forward proxy, whereas this work focuses on a reverse833

proxy approach. As such, the trust models are different as the reverse proxy represents the end device834

from the point of view of the client. Despite the difference in proxy models, the two approaches835

remain compatible and could strengthen each other. For example, the SSP could implement OSCOAP836

for cases where clients are employing a forward proxy, which is not trusted by the client. Additionally,837

it would be interesting for the SSP to support OSCOAP as a lightweight alternative for DTLS to838

protect communications with constrained devices with severe memory limitations. In such a case,839

clients would communicate securely with the SSP over DTLS while the communications between the840

SSP and the constrained devices would be protected either via OSCOAP (e.g. for constrained devices841

with severely limited memory) or via DTLS (e.g. for constrained devices with sufficient memory).842

Finally, in high volume web environments transport layer security is often terminated at a843

proxy deployed close to the web server(s). The main motivation for terminating TLS is that it844

enables load balancing, where terminated HTTPS requests are distributed over multiple web servers.845

Load balancing increases the availability of the web deployment, as the outage of one web server846

does not affect the service availability in this case. Popular Web proxy software, like nginx and847

HAProxy, supports different reverse proxy deployment options for terminating TLS. Similarly the848

elastic cloud computing platform of Amazon.com, Amazon Web Services, supports TLS termination849

and load balancing by virtue of its HTTPS listener service. While the main motivation of the SSP850

for session termination is not load balancing, the SSP does apply termination in order to be able851

to move computationally expensive and verbose operations from constrained devices to the proxy852

which improves performance. Similarly to high availability TLS proxies, the SSP may reduce key853

management complexity as all keying material for public communications are stored on one system.854

6. Evaluation: results and discussion855

This section presents two evaluation scenarios that show the gains attainable by our approach.856

Such gains include: a decrease in load on constrained devices and the LLN, lower energy usage for857

constrained devices, an increase in user handling capacity of LLNs, more responsive LLNs, more858

scalable authentication and better authorization. The evaluation scenarios were chosen to evaluate859

the impact of the proxy on two specific operational aspects of LLNs: setting up DTLS sessions with860

constrained devices over multiple wireless hops and observing CoAPs resources on constrained861

devices from multiple DTLS clients.862

6.1. Terminating end-to-end-security at the SSP863

The first evaluation scenario is geared towards quantizing the impact of splitting end-to-end864

security at the smart service proxy. More specifically, the goal is to study the impact of re-using a865

DTLS session of a constrained CoAPs server on the operation of both the constrained node as well as866

the CoAPs client.867

6.1.1. Simulation setup868

Extensive simulations were performed with a nine node 6LoWPAN network arranged in a cross869

topology as detailled in figure ??. One node is at the center of the cross and is the RPL border router870

of the 6LoWPAN network, four nodes are intermediate routers (each located in the middle of one871

of the four legs of the cross) and the last four nodes are CoAP(s) servers that are located at the four872

ends of the cross. The border router is connected to the smart service proxy, which is running on the873

same PC as the Cooja simulator. Finally, an unconstrained CoAP(s) client interacts with the CoAP(s)874

servers. In the evaluation scenario the client sends the following sequence of CoAP(s) requests: a875

.well-known/core discovery request, a sensor measurement request for the “/s” resource and an876

actuator request for the “/a” resource. The constrained CoAPs servers are running er-coap and877
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TinyDTLS (in Contiki) configured to accept the ’TLS_PSK_WITH_AES_128_CCM_8’ cipher suite with878

a PSK hint of 15 bytes.879

4

3

1

2

5

67

8 9

Figure 5. Cooja network topology: four CoAP(s) servers (6, 7, 8, 9) are located two hops away from
the RPL border router.

The same request sequence was sent to the CoAP(s) servers for one reference case and three880

different SSP configurations: plain text (PLT), end to end (E2E), first termination (TER1) and n-th881

termination (TER). In the PLT configuration, all requests are sent over plain-text CoAP. This is a882

reference cases for the other three cases. In the E2E case, all requests are sent over CoAPs without any883

termination of DTLS sessions at the SSP. In case of TER1 and TER, all requests are sent over CoAPs884

and the DTLS session is terminated at the SSP. For TER1, there does not exist an active DTLS session885

between the proxy and the constrained node. Therefore a new DTLS session must be setup between886

the SSP and the constrained node. For TER, the active DTLS session in the LLN can be re-used and887

there is no need to setup a new DTLS session with the constrained node. For all DTLS cases, the888

DTLS client always sets up a new DTLS session at the start of a request sequence. It also tears down889

the existing session at the end of every sequence. As such, this testing scenario represents a large890

number of DTLS clients that would interact with the constrained CoAPs servers over the lifetime of891

the constrained node. For each configuration the request sequence was run four hundred times, i.e.892

one hundred times per DTLS server. All results were obtained using the default CSMA MAC protocol893

and ContikiMAC RDC protocol as available in Contiki.894

6.1.2. Results895

Figure ?? shows the total transaction time (TTT). This is the time between the start of the DTLS896

session handshake (i.e. when the first ClientHello message is sent by the client) and the end of the897

DTLS session (i.e. when the DTLS Finished message is received by the client). There is a significant898

reduction in TTT between the E2E and the TER configurations: their medians are 4879 ms and 2060 ms899

respectively. This is due to the DTLS session re-use in the LLN, which saves - when comparing the900

median cases - thirteen packets in the LLN as the DTLS handshake in the LLN can be avoided in the901

TER configuration. As a result, the TER configuration is able to closely match the reference plain-text902

case in terms of TTT. The 233 ms difference in median is caused primarily by the overhead of the903

additional DTLS headers (X B per DTLS packet). More specifically the overhead triggers 6LoWPAN904

fragmentation for the large discovery response in the TER case, whereas this fragmentation is absent905

in the PLT case.906

Figure ?? displays the energy usage for the different configurations. The stacked bar plot shows907

the median energy usage per category on the constrained device, whereas the box plot shows the total908
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(b) Median energy usage per category (left axis) and total energy
usage (right axis).

Figure 6. Transaction times and energy usage of the CoAPs servers for the three gateway
configurations (E2E, TER1, TER) and the plain text CoAP reference case (PLT)

energy usage (to show the dispersion of the measurements). Again, there exist a significant difference909

between the E2E and the TER configurations: 32485 µJ vs 13133 µJ respectively (a reduction by a910

factor of 2.4). Similarly to the TTT results, this reduction is primarily due to the absence of the DTLS911

handshake in the LLN. This is confirmed by the bar plot where the energy usage for the RX and TX912

categories are reduced the most. The energy consumption in the CPU category is also significantly913

lower, as the CPU is in low-power mode more often and does not have to perform expensive hash914

calculations when completing the handshake. All in all, the results allow us to conclude that our915

approach increases the responsiveness of constrained devices (provided there is an active session in916

the LLN) while reducing the energy consumption for traffic loads with many DTLS sessions (e.g.917

traffic loads with many parties).918
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Finally, it is worth pointing out that our approach drastically limits the total number of919

handshakes that a constrained node will perform during its lifetime. Apart from the savings920

discussed above, this also has the additional benefit that - in lossy networks - the total number of921

failed handshakes will be lower. Indeed, Garcia et al. [? ] have shown that in lossy networks922

the fraction of failed handshakes can vary significantly based on the packet loss ratio: e.g. 30-40%923

of handshakes fail for a PLR of ~20%. By limiting the total number of handshakes, our approach924

also limits the amount of constrained device resources wasted on these failed handshakes. On the925

other hand, care should be taken to periodically refresh keying material as needed by the underlying926

cryptographic primitives in use.927

6.2. Aggregating multiple CoAPs clients at the SSP928

The second evaluation scenario focuses on the impact of the SSP on constrained devices that929

serve multiple CoAPs clients simultaneously via CoAPs observe. Unlike clear text CoAP observe,930

notifications for one CoAPs client typically can not be reused to serve another client due to the931

confidentiality of the notification in DTLS. However, the SSP presented in this work can - as a reverse932

CoAPs proxy - observe one CoAPs resource on a constrained device and use these notifications to933

serve a multitude of CoAPs clients. The presented evaluation considers up to ten CoAPs clients that934

observe a resource on a constrained device and compares the case of end-to-end observation versus935

observation via the SSP. Note that one should keep in mind client authorization when using one936

CoAPs stream of notifications for serving multiple CoAPs clients. E.g. a client that is not authorized937

to access a resource on the constrained device, must also be denied access to that resource via the938

SSP. To this end, this work presents and implements an access control adapter which enforces CoAPs939

resource-specific access control policies.940

6.2.1. Experiment setup941

48
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Figure 7. Representative RPL network topology: the node under study, node #50, is situated two hops
from the border router, node #152.

To quantity the impact of aggregating CoAPs observations at the SSP, a number of experiments942

were run on a WSN testbed. The experiments consisted of a 6LoWPAN network with ten sensor943

nodes arranged on a line with six meters of spacing between adjacent nodes. An additional sensor944

node (node #152) is situated to the upper left of the line and is connected to a Raspberry Pi 2 where945

it serves as the RPL border router. The smart service proxy software is running on the Raspberry946

Pi 2. In order to cope with changes in the RPL topology between experiments and over time in the947

same experiment, node #50 was selected for testing as it was always located two hops away from948

the border-router. A representative network topology is shown in figure ??. Note that depending949

on the experiment node #50 might have a different parent than node #47 (e.g. node #43 was a950
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common alternative), but in all experiments there was always an intermediary router between the951

border router and node #50.952

All wireless sensor nodes employ the msp430f5437 uC with 128KB of RAM and 256KB of ROM953

and the TI CC2520 802.15.4 transceiver. As such, the platform is identical to the WiSMote platform954

in Contiki in terms of the specifications that are relevant for the presented results. The sensor nodes955

run a TinyDTLS CoAPs server which is configured to support three simultaneous DTLS sessions and956

one simultaneous DTLS handshake. While a binary for four simultaneous sessions could be built,957

it was not running stable. Attempts for supporting more than four clients led to a RAM overflow958

during linking. By default er-coap in Contiki sends one confirmable notification for every twenty959

notifications. Finally, all sensor nodes in the network are running the default CSMA MAC protocol960

and ContikiMAC RDC protocol available in Contiki.961

For every sensor node, a corresponding virtual host was created on the SSP. The962

virtual hosts were configured similar to the listing in section ??, with support for the963

“TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8” cipher suite. This cipher suite provides perfect964

forward secrecy by means of an ephemeral Diffie-Hellman key exchange between the virtual hosts965

and the DTLS clients. Additionally, DTLS clients authenticate virtual hosts by means of the x.509966

certificates of the hosts, which are signed by a certificate authority (CA) trusted by the clients.967

Similarly, the DTLS clients also present a x.509 certificate during the DTLS handshake which is signed968

by a CA that is trusted by the proxy. As a result the clients may be authenticated at the proxy-side (by969

mapping attributes from the certificate to a user in the proxy, see section ??), which is mandatory970

for the use of the access control adapter in order to provide fine-grained authorization as presented971

in section ??. Each virtual host was allocated a global IPv6 address from the LAN network of the972

Raspberry Pi2 and has one default adapter chain with access control, caching and proxy adapters.973

The CoAPs clients ran as part of the CoAP++ framework on a PC that was located three IPv6 hops974

away from the Raspberry Pi2. All IPv6 addresses in use (i.e. CoAPs clients, RPI, virtual hosts and975

WSN nodes) were working, global IPv6 addresses. An overview of the evaluation setup is shown in976

figure ??.977

6LoWPAN
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IPv6 routers CoAPs servers
One to ten

CoAPs clients

E2E

SSP
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SSP with 
virtual hosts
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Figure 8. Evaluation setup: a variable number of CoAPs clients observe one of two resources on either
the virtual host (SSP) or the sensor node (E2E)

In all experiments, a number of CoAPs clients observe a resource on either the virtual host or the978

sensor node. As such, the experiments considered two cases: end-to-end (E2E) CoAPs observations979

and CoAPs observations via the SSP. In both cases, experiments were run for two CoAPs resources: a980

resource with a one second notification period and another resource with a five seconds notification981

period. In the E2E case, experiments were performed with one, two and three simultaneous CoAPs982

clients. In the SSP case, experiments were performed with one, two, three, four, five and ten983

simultaneous CoAPs clients. In total, eighteen experiments were performed. Each experiment was984

run for at least twenty minutes, during which the energest outputs for all sensor nodes were captured985

every five seconds and the outputs from the CoAPs clients were stored as well. This enabled us986

to quantity the energy usage as well as the application-layer performance, the results of which are987

presented in the following section.988
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6.2.2. Results989

When comparing the energy expenditure graphs for node #50 in figure ??, it becomes clear that990

aggregating CoAPs observation relationships leads to energy savings. The savings are proportional991

to the rate of notifications: they increase as the number of clients goes up and decrease as the992

notification interval becomes longer. Note that the sensor node between node #50 and the border993

router experiences similar energy savings as every notification is received and retransmitted by this994

intermediary node. For the case of three CoAPs observers, the median energy expenditures differ by995

10.8 mJ for the one second interval and 2.5 mJ for the five seconds interval.996

For one CoAPs observer and the one second interval, there exists a small difference in energy997

expenditure between the end-to-end and the SSP case even though the notification rate is the same for998

both cases (i.e. one notification per second). This is primarily due to a difference in notification packet999

size as the 6LoWPAN compression for SSP notifications is more effective than for E2E notifications.1000

The compression is more effective because the IPv6 address of the SSP is part of the 6LoWPAN1001

network whereas the CoAPs client’s IPv6 address is part of a different network. As such, the prefix1002

of the SSP’s IPv6 address can be elided (due to stateful 6LoWPAN compression), which leads to an1003

eight bytes saving in packet size per notification.1004

The graphs in figure ?? clearly illustrate the difference in notification rate between the end-to-end1005

and SSP experiments. Due to the aggregation of CoAPs observations at the SSP, there exists only1006

one CoAPs observation between the SSP and the sensor node. This is illustrated in the constant1007

notification rate for SSP as the number of CoAPs observers increases. For the end-to-end experiments1008

the notification rate rises linearly with the number of observers, as the sensor node sends notifications1009

to each client separately. The slope of this linear relation is proportional to the notification frequency.1010

Figure ?? plots the notification loss ratios (NLR) for each of the eighteen experiments. For1011

example for the E2E, one second interval and one observer case 1845 notifications were sent, three1012

of which never arrived at the client. This leads to a NLR of 0.163%. Note that every vertical series1013

of data contains as many points as there are observers, however very similar and identical NLR’s1014

overlap too much to distinguish them as separate points in the plot. The graphs for the one second1015

interval show that the end-to-end case suffers from network congestion due to its higher notification1016

rate. Also, the observed loss is heavily dependent on the CoAPs client in the E2E experiments: i.e. the1017

client that is last on the list of observers experiences the highest NLR (mostly apparent when there1018

are three observers). Finally, the SSP sends every notification as a confirmable message. While in1019

this setup packet loss is mainly a problem in the constrained WSN, sending all notifications as CON1020

messages can help to improve the NLR in situations where the client is part of a lossy network.1021

To conclude, there are a number of limitations that are overcome by aggregating observations at1022

the SSP:1023

1. Memory and processing constraints on the sensor node, which limit the number of1024

simultaneously active DTLS sessions and active CoAP observe relationships.1025

2. Limited throughput in constrained (multi-hop) networks, which impact the successful delivery1026

of notifications and limits the rate of notifications.1027

3. Limited lifetime for battery-operated sensors, by reducing the load on constrained devices the1028

lifetime is lengthened.1029

Note that while only the results for node #50 are shown, similar savings apply for other nodes. Also1030

note that applying observation aggregation at the SSP delays the point at which the WSN reaches1031

congestion, as the message rate in the WSN is reduced by the aggregation. Finally note that this1032

experiment is only possible because the SSP terminates the end-to-end security, indeed should this not1033

be the case then the SSP would be unable to aggregate observe relationships as all communications1034

would be encrypted end-to-end.1035
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Figure 9. Total energy expenditure for node #50 per five seconds interval for end-to-end (E2E) CoAPs
observation versus CoAPS observation through the Smart Service Proxy (SSP)

7. Conclusions1036

In this work we have presented the Secure Service Proxy: a CoAP(s) intermediary for use in1037

resource-constrained RESTful environments. It has been designed to provide scalable end-to-end1038

security for constrained devices and to extend constrained devices with additional functionality. The1039

presented work follows a reverse proxy approach, where the SSP hosts virtual devices on behalf1040

of resource-constrained devices. This approach enables the SSP to extend the virtual devices with1041

security features which are hard to attain in constrained environments such as authentication based1042
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Figure 10. Number of exchanged packets for node #50 per five seconds interval for end-to-end (E2E)
CoAPs observation versus CoAPS observation through the Smart Service Proxy (SSP)

on public key infrastructure (which, inherently, scales better than using PSKs), perfect forward secrecy1043

and fine-grained authorization based on host identify and the nature of the request and resource.1044

Additionally, the SSP extends virtual devices with a variety of different functions by means of an1045

adapter chain system. Adapters are modular blocks of functionality that are hosted on the virtual1046

device. Examples include caching, static resource and congestion control adapters. The SSP hosts a1047

RESTful web interface for managing virtual devices and adapter chains.1048
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Figure 11. Notification loss ratios as measured at the CoAPs clients for end-to-end (E2E) CoAPs
observation versus CoAPS observation through the Smart Service Proxy (SSP)

The SSP has been evaluated in two different setups. First, tests were performed in a LLN1049

simulator to measure the effect of terminating end-to-end security on the SSP. The results of1050

the simulator study demonstrate that session termination combined with long-term sessions in1051

the constrained network, lead to significant savings in network traffic, communication delay and1052

processing and consequently lead to longer battery life. The second study was ran on a WSN1053

testbed and quantified the impact of aggregating multiple observe relations with a constrained device1054

over DTLS. The results confirm that the load on the constrained device and constrained network is1055
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independent of the number of observers. As a result, the packet rate and energy expenditure remain1056

equal to those of the one observer case as the number of observes increases. Note that the session1057

termination is a necessary condition for observe aggregation in case of DTLS-based security.1058

In conclusion, the presented Secure Service Proxy breaks end-to-end security in order to offer1059

security primitives that are hard to attain on constrained systems while reducing the load on resource1060

constrained devices and networks.. Additionally, the proxy provides extra application-layer features1061

on behalf of constrained devices to services, which are built on top of these devices. Combined, the1062

proxy facilitates the integration of constrained RESTful environments in services; thereby furthering1063

the vision of an open, secure and scalable Web of Things.1064
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