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Abstract—As the Internet of Things continues to grow
rapidly in the coming years, the number of devices with
limited resources will continue to grow as well. These so-called
constrained devices typically implement specialized protocols
and data formats for increased efficiency. While this reduces
the load on constrained devices, it also limits the usability of
such devices for their users. This paper presents a HTTP-
CoAP proxy for improving the usability of constrained devices
that implement embedded web services. This is accomplished
by rendering user interfaces and solving naming and routing
issues. As a result, the user experience of highly-optimized
embedded web services is similar to that of conventional
web services. By means of small-scale experimentation, the
presented approach is evaluated functionally and the usability
is evaluated in terms of user interface responsiveness.
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I. INTRODUCTION

According to numerous market research reports [1][2][3],
the number of Internet-connected devices will have risen
drastically by the end of this decade. A considerable amount
of these newly connected devices, are so-called “constrained
devices”, i.e. devices with tight limits on power, memory,
connectivity, processing power, cost and physical size. Due
to their anticipated widespread usage, IoT devices are ex-
pected to impact a large number of aspects of our society and
our daily lives by enabling a whole new range of services [4].
In order to realize these services, IoT devices have to interact
with each other, with their environments and with their users.

On the other hand, users of such services expect an
experience similar to the conventional Internet services with
which they are familiar: e.g. web browsing, mobile applica-
tions, web search, etc. For services that build on constrained
devices, this is a challenge as the constraints intrinsic to
these devices impose limits on their functionality and as
such on their usability. Consider, for example, a battery-
powered air monitoring device with a hundred kilo bytes of
memory. For such a device it is impossible to offer a web-
based user interface that offers a user experience similar to
today’s popular web platforms.

There exist a number of solutions for overcoming this
problem. A subset of these rely on systems external to the
constrained device for overcoming the limited usability of
such devices. More specifically, this work presents a web
proxy based approach for improving interactions between

users and constrained devices in a web of things context.
We demonstrate how our approach solves a number of us-
ability problems common to low-power and embedded web
services, thereby showing the feasibility and effectiveness of
our work.

II. PROBLEM STATEMENT AND RESEARCH GOALS

Constrained devices are subject to a number of limitations,
most of which are the result of the required low device cost.
As these limitations directly impact the usability of con-
strained devices, they are briefly discussed in this paragraph.
Firstly, popular low-power micro controller families such as
the ARM Cortex M3, TI MSP430 and AVR ATmega offer
many different models where the available volatile memory
varies between 8KB and 100KB and the read-only memory
between 32K and 1024KB. In every use case a trade-off has
to be made between cost vs available memory space: 16KB
RAM and 128 or 256KB ROM is a common choice for
systems in sensor and mesh networks. For battery-powered
devices, power consumption is a second important consid-
eration. Low-cost devices typically have lifetimes equal to
their battery lifetimes, as replacing the battery is deemed too
expensive. As a result, energy consumption should be kept
to a minimum by e.g. limiting computation and commu-
nication. Finally, a third important constraint of networked
systems is the employed communication technology. For our
discussion, it should enable low-power communication while
keeping the component cost (e.g. transceiver, amplifiers,
antenna) low. A comprehensive overview of the constraints
is available in RFC 7228 [5]. As per RFC 7228 terminology,
this work focuses on Class 1 constrained devices, with
∼10KiB RAM and ∼100KiB ROM.

Each of these discussed limitations impacts the usability
of constrained devices in different ways. In the class 1
systems under consideration, the limited memory commonly
has to fit the entire communication stack (i.e. everything
above the PHY layer) as well as the necessary logic to realize
the intended service. As a result, the remaining amount of
memory left to also implement a high quality user interface
is typically very low. For example, a simple index page
based on the popular bootstrap template for responsive web
interfaces 1 requires 89.6KB of memory: Javascript (minimal

1https://getbootstrap.com/
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jQuery and bootstrap: 44.6KB), CSS styling (38.4KB) and
HTML (6.5KB). One can increase the available memory to
include all necessary files or host the static media files (JS
and CSS) externally. Even so, a considerable amount of
additional data for the UI (in the order of (tens of) kilo
bytes) would have to be transferred between the constrained
device and the client. For battery-powered devices, this
would drastically hasten the depletion of the energy source
and therefor limit the lifetime of the device. In the case of
low-throughput networks, transferring the additional UI data
could lead to long latency penalties as the networks are not
dimensioned to transmit large chunks of data. Consequently,
user experience would suffer under these long delays. As a
result, class 1 devices are considered to offer ‘bare-bone’
RESTful resources - via the specialized CoAP protocol -
that are cumbersome to use due to the lack of a UI.

Low-power network protocols such as 6LoWPAN and the
RPL routing protocol also impact the usability of constrained
nodes. In such networks, separate IPv6 networks are typi-
cally assigned to the low-power and lossy networks (LLNs).
In cases where global IPv6 routing for the LLNs is unfeasi-
ble (e.g. private LLNs), the user is expected to reconfigure
its network configuration to add a routing rule to the LLN.
For most users this is unrealistic. Additionally, the use of
IPv6 means that constrained nodes are reachable via 128
bit IPv6 addresses. As these long addresses are impractical
for human users, an alternative has to be provided. Also,
discovery of devices by a user might be difficult.

The goal of this work is to answer the following research
question: given the problems outlined above, how can direct
user interactions with constrained devices in low-power and
lossy networks be improved? In answering the question,
this work looks at the problem from an embedded web
services point of view as realized with the IPv6 and CoAP
protocols [6]. Although the focus is on these technologies,
the core concepts of this work are more broadly applicable.

III. USER FRIENDLY INTERACTIONS

A. Requirements

In analyzing the posed research question, the following
requirements for suitable solutions that improve user inter-
actions are identified:

1) Impact on constrained devices should be kept
to a minimum. Consequently the device constraints
outlined in the previous section remain unaltered.

2) Easy to use interfaces for the user. The user experi-
ence should be similar to popular web-based services.

3) Handle a wide variety of constrained and user
devices. When looking only at embedded web ser-
vices, a constrained device can serve many purposes.
Similarly, there exists a large range of user devices.

4) Minimal configuration and easy discovery. Any
usable solution should require minimal configuration

from the user. It should also facilitate easy discovery
of constrained devices and their services.

5) Easy to build user interfaces. While building inter-
faces will require some technical knowledge, it should
be based on open and readily available technology to
facilitate designers.

There are a number of approaches that fit the requirements
outline above, some of which are presented in the related
work section. The approach in this work is discussed in
the following section and relies on web-based application
proxies combined with naming and discovery services.

B. Approach

Figure 1 outlines the approach of this work and how it
differs from what is available today. Today, users interface
with devices directly via CoAP or indirectly via HTTP
through a gateway. In both cases the user is served the
unaltered CoAP response, which is typically encoded in a
compact but obscure binary format. Our approach introduces
web-based application proxies, whose main task is serving
web interfaces to users. The proxies process web requests
from the user’s browser and translate the requests into
RESTful CoAP requests for constrained devices. Responses
from constrained devices are processed by proxies and used
as input for rendering web interfaces to users.
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Figure 1. Our approach serves users web interfaces of embedded web
services on constrained devices.

One of the benefits of this approach is that all user interac-
tions with the constrained devices make use of standard web
technology (i.e. TCP/HTTP/WWW). As a result, the web
interfaces are available to a wide range of user devices (only
a web browser is needed). The proxies implement a template
lookup interface that returns the web interface template to
be used for rendering a response to the user. This lookup
interface takes into account the resource type of the RESTful
resource and the device type of the user device. Combined
with leveraging the CoAP standard, different web interfaces
can be rendered for different types of resources thereby sup-
porting a wide range of constrained devices. Additionally,
the device detection of the proxies combined with well-
known web technology for designing templates enable user
friendly interfaces that are adapted to the device of the user.

As CoAP is a highly optimized, binary application proto-
col specifically designed for constrained environments, the
impact of our approach on constrained devices in terms of
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Figure 2. System overview

memory usage, communication overhead and battery life is
kept to a minimum. Also, this approach does not require
any changes to the software running on the constrained
devices or the user’s web browser. Finally, by interfacing
with directory and naming services the proxies enable easy
discovery and naming of devices respectively.

C. Design

An overview of the resulting system is shown in figure 2.
The devices through which a user interacts with the con-
strained devices are shown on the right, the constrained
devices are shown on the left. The middle shows the seven
submodules which make up the design of the web-based ap-
plication proxy. In order to offer all necessary functionality
the proxies also interface with a Resource Directory (RD) [7]
and a DNS name server, these are shown in the bottom right.

When a user directs its browser to a constrained de-
vice via the proxy, the proxy starts processing the HTTP
request by extracting the target CoAP URI of the con-
strained device from the hosting HTTP URI. Depending
on whether the proxy is processing the request as a for-
ward or reverse HTTP-CoAP cross protocol proxy (as
per “Guidelines for HTTP-to-CoAP Mapping Implementa-
tions” terminology [8]), the extraction method will differ.
In the forward proxy case, the target CoAP URI can
readily be extracted from the hosting HTTP URI; e.g.:
http://proxy.example.com/hc/coap://s.example.com/light. In
the reverse proxy case, where the user surfs directly to the
device (e.g. http://s.example.com/light), the device mapping
submodule maps the HTTP URI to the target CoAP URI.

Once the target CoAP URI is known, the proxy looks up
the template for rendering the CoAP resource response to
the user. The template lookup module maintains a database
of templates for different CoAP resource types and differ-
ent web browsers (mobile, desktop and miscellaneous). In
case the resource type of the CoAP resource is unknown,
the template lookup module contacts the Resource Direc-
tory to retrieve all meta information related to the target
CoAP URI. The browser of the user is identified by the
browser detection module. This module processes the HTTP
header fields (mainly the User-Agent header) and determines
whether the user is surfing from a mobile or desktop device.
Once the user’s browser type and CoAP resource type are

known, the template lookup module searches for a matching
web template and returns the result to the template renderer.
In case no matching template is found, a default template
may be used depending on the user browser.

Apart from the web page contents, a template also spec-
ifies whether the proxy should wait for the CoAP response
before rendering the template and returning the HTTP
response to the user. As CoAP response times might be
long and unpredictable (order of seconds), the user could
experience long delays if the proxy were to wait on the
CoAP response for rendering the web interface. Therefor,
templates that anticipate long response times can indicate to
the proxy that they should be rendered immediately. These
templates then retrieve the CoAP response (via the proxy)
once they have been rendered by the browser of the user.

For retrieving CoAP responses, a template may employ
Asynchronous JavaScript And XML (AJAX) techniques to
send an AJAX request to the hosting HTTP URI. The
proxy detects that the request is an AJAX request (via
the HTTP XMLHttpRequest header) and skips the web
template lookup procedure (the web browser is detected as a
miscellaneous device in this case). Instead the proxy sends
a CoAP request to the target CoAP URI and returns the
CoAP response in the AJAX response (which might take a
long time). The template is then free to process the AJAX
response: e.g. update a text area, a graph, an HTML form,
etc. Additionally, these AJAX techniques can be used to
drive an actuator (via PUT or POST requests), to poll a
resource periodically (e.g. while updating a graph), ... Note
that services building on top of the proxy for data access,
will not be served a web interface as their user agent is not
recognized as a web browser: e.g. the user-agent of the urllib
HTTP client in Python 3.4 is “Python-urllib/3.4’. In this case
the proxy operates as a standard HTTP-CoAP proxy.

The CoAP client module in the proxy sends requests to
the constrained devices for retrieving CoAP responses. It
incorporates a cache in order to speed up response retrieval.

The final module in the design is the response rewriting
block. For certain Content-Types, this block rewrites the
CoAP response in order to display it in the web interface.
At the moment, the block only rewrites CoRE link format
responses [9] by replacing web links with links that are
handled by the proxy. This is necessary when discovering



CoAP devices and resources via the proxy, as explained next.

D. Device mapping, discovery and naming

In the reverse HTTP-CoAP configuration, one might
wonder how the device mapping module builds the mapping
from HTTP to CoAP URIs. As minimal configuration is
an important requirement, the user cannot be expected to
maintain this mapping. Instead, the proxy retrieves a list
of known constrained devices from the Resource Directory
and assigns reverse IPv6 LAN endpoints for each of these
devices. In order to make these new endpoints discoverable,
the proxy registers the reverse endpoints in the RD (with
the same resources as the constrained endpoint). Thus the
RD contains both the known constrained devices (in a
non-default domain, which is used by the proxy) and the
corresponding reverse endpoints (in the default domain,
which is used by users for discovery). As a result, when
users surf to a reverse endpoint (as discovered in the RD),
the proxy is readily able to determine the target CoAP URI.
An example of this mapping and discovery procedure is
presented in the evaluation section.

In the forward HTTP-CoAP configuration, the device
mapping is not needed as the URI mapping is explicit. In
this configuration, the user discovers the proxy by means of
a HTTP resource with resource type “core.hc” (as per [8])
in the proxy’s .well-known/core.

As mentioned earlier, the use of IPv6 and 6LoWPAN can
lead to long IPv6 literals in hosting HTTP URIs. To remedy
this, the proxy offers a /dns resource for each constrained
device that renders a form where users can set a DNS
hostname for the constrained device. Afterwards, users can
use the host name instead of the IPv6 literal for surfing to the
device. Alternatively, the host name could also be retrieved
from a CoAP resource on the constrained device itself (e.g.
in case the device was preprogrammed with a host name).

IV. EVALUATION

A. Evaluation setup

For evaluating the web-based application proxy, extensive
tests are performed using the setup depicted in figure 3.
The setup consists of two types of constrained devices:
Zolertia Z1s sensor nodes and nodeMCU ESP8266 nodes.
There are eight Z1s that form a 6LoWPAN LLN where
one Z1 is connected via SLIP to the Raspberry Pi as the
border router. Note that the 6LoWPAN network is a private
network as the IPv6 prefix (fd00::/64) is a unique local
prefix. The Z1s are equipped with a msp430f2617 micro
controller (8KB RAM and 92KB flash memory), an IEEE
802.15.4 CC2420 transceiver and run the Contiki OS. The
nodeMCUs are IPv4 only devices and are connected to
the Raspberry Pi via the Wi-Fi access point. NodeMCUs
are based on the low-power ESP8266 ESP-12E Wi-Fi SoC
and have 32KB RAM and 4MB flash memory. Both the
Z1s and the nodeMCUs are running CoAP servers. All

constrained devices are configured to register themselves
with the Resource Directory at start-up.

6LoWPAN

fd00::/64
192.168.0.0/24
2001:6a8:1d80:ff::/64

RPI

LAN

Figure 3. Evaluation setup: 6LoWPAN Zolertia Z1’s (red) and 802.11
WLAN nodeMCUs (gray) as constrained devices. Raspberry Pi as appli-
cation proxy. Red arrows indicate CoAP exchanges, black arrows HTTP
exchanges. Solid lines indicate IPv6 datagrams, dashed lines IPv4.

The Raspberry Pi is a dual-stack device and is part of both
the 6LoWPAN network and the LAN network. The RPI runs
the application proxy, as well as the resource directory and
the DNS server for the LAN network. The application proxy
is implemented as part of our CoAP++ framework, which is
built on top of Click Router. The proxy is configured as a
reverse proxy for each of the constrained devices. As such,
the proxy listens for new device registrations in the RD,
allocates reverse endpoints in the IPv6 LAN network, stores
the resulting device mapping and registers the allocated
endpoint in the resource directory. As a result, the user can
access constrained devices (6LoWPAN or Wi-Fi) through
the reverse endpoints via the proxy. Finally, the notebook
is running Ubuntu 14.04 and the smart phone is a Google
Nexus 5. The round trip time between the Z1’s and the
notebook was measured via ping6 and is on average (µ)
163.1 ms with standard deviation (σ) 69.4 ms.

Figure 4. Device discovery via the RD endpoint lookup interface

B. Functional evaluation

In order to discover the constrained devices, the user surfs
to the resource directory in its browser: http://rd.test/ which
redirects the user to the rd-lookup/ep web interface. This



HTTP request is handled by the proxy and is translated into
a CoAP request for the local resource directory. The CoRE
link format discovery response is rewritten to a HTML table
and this table is rendered in the template for the core.rd-
lookup resource type. Figure 4 shows the discovery response
in the mobile Google Chrome browser.

Next, the user taps on the HTTP link of the device
of interest which takes the user to the .well-known/core
resource. Here all the resources offered by the device as
well as HTTP links are listed, as shown in figure 5.

Figure 5. Rendering .well-known/core of a constrained device

Finally, the user taps on a resource of interest to interact
with. Depending on the resource type, the interface will
be different. Figure 6(a) shows a template that periodically
updates a graph (using chartjs.org) of a temperature resource.
The underlying ‘/sensors/temp’ CoAP resource returns plain-
text temperature readings. Figure 6(b) shows a template that
renders a button for controlling an actuator (in this case a
LED is turned ON and OFF). Tapping the button sends an
HTTP POST request to the resource on the proxy, which is
sent to the underlying CoAP resource by the proxy. Note that
the temperature resource is hosted on a 6LoWPAN device,
whereas the actuator resource is hosted on a Wi-Fi device.

C. Interface responsiveness: load times

The previous section illustrated the user interfaces that can
be expected from our approach. An important performance
metric of such user interfaces is the responsiveness: e.g. a
sluggish interface can ruin the user experience. To qualify
the responsiveness, the load times for two different types
of templates are compared: a simple template, which blocks
on the CoAP response before it is rendered, and an AJAX
template, which is rendered immediately and fetches the

(a) Plotting temperature (b) Toggling an actuator

Figure 6. Different templates are rendered depending on the resource type
of the target CoAP resource: e.g. ibcn.temp and ibcn.light are shown here.

response afterwards. In order to measure worst case respon-
siveness, caching in the CoAP client has been disabled.
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Figure 7. CDFs of load times for different proxy configurations

The cumulative distribution functions of the load times
are plotted in figure 7 (for 100 measurements per function).
Notice that the load time2 of the AJAX template (blue
line) is always smaller and more consistent when com-
pared to the simple template (green line). While the AJAX
template has to perform a second request to fetch the
CoAP response (yellow line), it is already rendered in the
browser before this second request is issued. Also note
that when the round trip time to the constrained devices
would increase, the load time for the simple template would
increase (green line would shift to the right) whereas the
load time for the AJAX template remains constant as it does
not depend on constrained device communication. As such,
AJAX templates are clearly superior to simple templates in

2As browsers typically render a considerable fraction of the UI before
the load time has expired, the load time is considered an upper limit for
the UI responsiveness. However, larger average load times do indicate a
decrease in UI responsiveness.



terms of responsiveness. Finally, the difference between the
CoAP (black) and no template (red) lines shows that the
delay introduced by our web interface rendering approach
is around 14 ms (their minimums differ 13.9 ms).

V. RELATED WORK

There are many options for improving user interactions
with constrained devices. In the HTTP-CoAP protocol cat-
egory, the work of Ludovici et al. [10] presents a design
of a forward cross protocol proxy that supports event-like
notifications through WebSockets as an alternative to HTTP
long polling. In contrast to our work, the proxy of Ludovici
et al. does not provide a user interface for web browser-based
users. Additionally, the proxy only operates in a forward
configuration which requires the user to support the URI
format implemented by the proxy. In [11] Colitti et al.
describe both a HTTP-CoAP proxy and a HTTP web appli-
cation for visualizing sensor measurements from a wireless
sensor network. While the proposed proxy does implement
a reverse proxy model, the web application is written as a
stand-alone application on top of the HTTP-CoAP proxy.
As such, the approach differs from ours where the template
rendering is an integral part of the cross protocol proxy.
In [12] Jin et al. present a CoAP service gateway for
automatically creating service mash-ups based on semantic
similarity between related CoAP servers. While CoAP SG
includes a HTTP-CoAP proxy that can return plain-text or
JSON HTTP responses, the focus is on aggregating data
from multiple CoAP servers rather than on generating user
interfaces. Nevertheless, the work does prove that proxies on
gateways are valuable for implementing extra functionality.

VI. CONCLUSION

This paper presented a number of methods for improv-
ing user interactions with constrained devices. Essential in
implementing these methods is the presented HTTP-CoAP
proxy, which renders user interfaces for RESTful resources
of constrained devices based on web templates. The paper
demonstrated this concept by means of two templates for
constrained device resources and one template for discovery
of devices and resources. Additionally, the interface respon-
siveness and the delay of our approach was also quantified.

In the future, the authors plan to extend the concept to
include transport layer security (i.e. HTTPS-CoAPs proxy)
and to support other functionality than user interface gener-
ation (e.g. data aggregation, data format rewriting).
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