

Verbeteren van efficiëntie, bruikbaarheid en schaalbaarheid
in een veilig, in mogelijkheden gelimiteerd 'Web der Dingen'

Improving Efficiency, Usability and Scalability
in a Secure, Resource-Constrained Web of Things

Floris Van den Abeele

Promotoren: prof. dr. ir. J. Hoebeke, prof. dr. ir. I. Moerman
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-038-3
NUR 986
Wettelijk depot: D/2017/10.500/73

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie

Promotoren: prof. dr. ir. Jeroen Hoebeke
prof. dr. ir. Ingrid Moerman

Juryleden: em. prof. dr. ir. Daniël De Zutter, Universiteit Gent (voorzitter)
prof. dr. ir. Jeroen Hoebeke, Universiteit Gent (promotor)
prof. dr. ir. Ingrid Moerman, Universiteit Gent (promotor)
prof. dr. ir. Eli De Poorter, Universiteit Gent (secretaris)
prof. dr. Danny Hughes, KU Leuven
dr. dipl.-ing. Matthias Kovatsch, ETH Zurich
prof. dr. Steven Latré, Universiteit Antwerpen
prof. dr. ir. Sofie Van Hoecke, Universiteit Gent

Universiteit Gent
Faculteit Ingenieurswetenschappen en Architectuur

Vakgroep Informatietechnologie
Technologiepark-Zwijnaarde 15, 9052 Gent, België

Tel.: +32-9-331.49.00
Fax.: +32-9-331.48.99

Proefschrift tot het behalen van de graad van
Doctor in de ingenieurswetenschappen:

computerwetenschappen
Academiejaar 2017-2018

Dankwoord

“Waarlijk, rechters, hoewel ik wens dat ik met elke deugd vereerd zou worden, is er
niets dat ik hoger acht dan dankbaar zijn en dit te laten blijken. Daar deze deugd
niet alleen de grootste, maar ook de bron van alle andere deugden is.”

– Marcus Tullius Cicero (54 v.C.)

Een doctoraatsproefschrift komt tot stand met de hulp en input van vele ande-
ren. Dat is niet anders voor mijn proefschrift en ik wil dan ook eenieder bedanken
die hieraan heeft bijgedragen. Allereerst wens ik Ingrid te bedanken, aangezien
zij mij de kans bood om zowel mijn masterproef als mijn doctoraatsonderzoek
aan te vatten bij wat destijds IBCN heette. Inhoudelijk ben ik Jeroen het meest
erkentelijk en ik wens hem dan ook te bedanken voor de vele discussies en de
voortreffelijke begeleiding en samenwerking gedurende de laatste vijf jaar. Naast
Jeroen, ben ik mijn (ex-)collega’s Isam, Girum, Cristian en Jetmir dankbaar voor
hun adviezen en inzichten in de technische materie. Dit onderzoek is tevens het
resultaat van de samenwerking met vele thesisstudenten, deze wens te bedanken
voor hun samenwerking: Pieter, Kobe en Stef, Steven en Ruben, Tom, Mathieu,
Maarten en Tomas. Tot slot, wil ik Eli, Steven, Danny, Sofie en Matthias erkennen
voor hun inzet als jurylid tijdens de evaluatie van dit onderzoek. Allen hebben zij
bijgedragen aan de kwaliteit van dit proefschrift.

Ik heb mijn tijd bij de onderzoeksgroep IDLab steeds als bijzonder verrijkend
ervaren. Dit kwam voornamelijk door een uitzonderlijke mix van (jonge) persoon-
lijkheden en culturen. De collega’s uit het voormalige 3.17 wens ik te bedanken
voor de aangename werksfeer: Wim, Daan, Dries, David, Jen, Wei, Tom, Michael,
Isam, Girum, Pieter W., Enri, Tarik en Elnaz. Ook na de verhuis naar Zwijnaarde
bleef het aangenaam werken met Cristian, Adnan, Jen, Merima, Matteo, Andy,
Amina, Michael, Enri en Mathias als bureaugenoten en Abdulkadir, Bart, Felipe,
Jetmir, Irfan en Vasileios als collega’s. Naast deze collega’s wens ik ook Bram,
Frederik, Marlies, Thijs, Sander en Sofie te bedanken voor de leuke momenten en
interessante discussies.

Tot slot wens ik vrienden en dichte familie te bedanken voor hun luisterend oor
en steun. Wij worden allen deels een product van onze omgeving en ik prijs me-
zelf dan ook gelukkig dat ik op een warme omgeving kan rekenen. In het bijzonder
wens ik Albijn en Tim te bedanken voor de zes jaren ten huize ‘Club Plumion’.
Hanne en Elisabeth wens ik te bedanken voor hun adviezen en steun in moeilijke
tijden. Lukas wil ik graag bedanken voor de vele heuglijke herinneringen, welke

ii

ik blijvend koester, en om mij bewust te maken van de broosheid van het leven.
Tot slot, wil ik mijn ouders, Antonia & Erik, bedanken voor hun onvoorwaarde-
lijke liefde. Jullie steun en aanmoediging hebben er mede toe bijgedragen dat dit
proefschrift succesvol is afgerond.

Sint-Martens-Latem, september 2017
Floris Van den Abeele

Table of Contents

Dankwoord i

Samenvatting xix

Summary xxiii

1 Introduction 1
1.1 Background . 1

1.1.1 Internet of Things . 2
1.1.2 The resource-constrained Internet of Things 4
1.1.3 TCP/IP for the resource-constrained Internet of Things . . 6
1.1.4 Web of Things . 7
1.1.5 Internet standards for web technology in constrained de-

vices and networks . 9
1.1.5.1 IPv6 over Low Power Wireless Personal Area

Networks . 9
1.1.5.2 The Constrained Application Protocol 10

1.1.6 Low Power Wide Area Networks 13
1.2 Research challenges . 14

1.2.1 Efficient resource utilization in an open Web of Things . . 14
1.2.2 Holistic security in an open Web of Things 15
1.2.3 Heterogeneity in the resource-constrained Internet of Things 15
1.2.4 Usability of constrained devices 15
1.2.5 Scalability of emerging LPWA technologies 16

1.3 Outline . 16
1.4 Research contributions . 20
1.5 Publications . 23

1.5.1 Publications in international journals
(listed in the Science Citation Index) 23

1.5.2 Publications in other international journals 24
1.5.3 Publications in international conferences

(listed in the Science Citation Index) 24
1.5.4 Publications in other international conferences 25
1.5.5 Contributions to standardization bodies 26
1.5.6 Patent applications . 26

iv

References . 28

2 Sensor function virtualization to support distributed intelligence in the
Internet of Things 33
2.1 Introduction . 34
2.2 The need for distributed intelligence 36

2.2.1 Generic IoT system . 36
2.2.2 Open challenges . 37

2.2.2.1 Act in time . 37
2.2.2.2 Work offline 39
2.2.2.3 Serve many 39
2.2.2.4 Move and sleep 39
2.2.2.5 Monoglot . 40

2.2.3 Distributed intelligence 40
2.3 Sensor Function Virtualization for the Internet of Things 42
2.4 IETF protocol stack for the Internet of Things 47
2.5 SFV in the unconstrained domain 49
2.6 SFV in the constrained domain 53
2.7 Related work . 53
2.8 Conclusions . 55
References . 57

3 Secure Service Proxy: A CoAP(s) Intermediary for a Securer and
Smarter Web of Things 61
3.1 Introduction . 62
3.2 Overview of CoAP and DTLS 65

3.2.1 The Constrained Application Protocol (CoAP) 65
3.2.2 Datagram Transport Layer Security (DTLS) 66
3.2.3 DTLS in constrained environments 69

3.3 Problem statement and research goals 70
3.3.1 End-to-end security in LLNs 70
3.3.2 Complex application features in LLNs 72
3.3.3 Problem statement: illustration in a smart building use case 73

3.4 The Secure Service Proxy . 74
3.4.1 Motivation of approach 75
3.4.2 Secure Service Proxy: design 76
3.4.3 Secure Service Proxy: implementation 79

3.4.3.1 Virtual devices and endpoints 79
3.4.3.2 Implemented application layer adapters 80
3.4.3.3 Adapter chain management: interface 82
3.4.3.4 Authenticating (D)TLS clients on the SSP . . . 83
3.4.3.5 Key management between SSP and constrained

devices . 84
3.5 Related work . 84
3.6 Evaluation: results and discussion 87

v

3.6.1 Terminating end-to-end-security at the SSP 87
3.6.1.1 Simulation setup 88
3.6.1.2 Results . 89

3.6.2 Aggregating multiple CoAPs clients at the SSP 91
3.6.2.1 Experiment setup 91
3.6.2.2 Results . 93

3.7 Conclusions . 96
References . 99

4 Improving User Interactions with Constrained Devices in the Web of
Things 103
4.1 Introduction . 104
4.2 Problem statement and research goals 104
4.3 User friendly interactions . 106

4.3.1 Requirements . 106
4.3.2 Approach . 106
4.3.3 Design . 108
4.3.4 Device mapping, discovery and naming 109

4.4 Evaluation . 110
4.4.1 Evaluation setup . 110
4.4.2 Functional evaluation . 111
4.4.3 Interface responsiveness: load times 112

4.5 Related work . 113
4.6 Conclusion . 114
References . 116

5 Integration of heterogeneous devices and communication models via
the Cloud in the constrained Internet of Things 119
5.1 Introduction . 120
5.2 Case study: logistics and transport 122
5.3 Problem statement and research goals 123
5.4 Background: Embedded web services via CoAP 126
5.5 Cloud platform for supporting heterogeneous devices and commu-

nication models . 128
5.5.1 The access layer: providing access to heterogeneous de-

vices and communication models 129
5.5.2 The abstraction layer: a homogeneous RESTful interface

for constrained devices 131
5.5.3 Machine to Machine communications 133

5.6 Evaluation . 133
5.6.1 Virtual device abstraction: scalability and latency 134
5.6.2 Communication models: push vs pull 136
5.6.3 Proof of concept: real world deployment 138

5.7 Related work . 143
5.8 Conclusion . 145

vi

References . 147

6 Scalability analysis of large-scale LoRaWAN networks in ns-3 151
6.1 Introduction . 153
6.2 Background: LoRa, LoRaWAN and ns-3 154
6.3 Problem statement and approach 157
6.4 LoRaWAN ns-3 module . 158

6.4.1 LoRa PHY error model 158
6.4.1.1 LoRa PHY baseband implementation 158
6.4.1.2 LoRa PHY BER simulations 161

6.4.2 LoRaWAN PHY layer 161
6.4.3 LoRaWAN MAC layer 162
6.4.4 LoRaWAN class A end device ns-3 application 165
6.4.5 LoRaWAN gateway ns-3 application 165
6.4.6 LoRaWAN Network server 165

6.5 Scalability analysis of LoRaWAN networks 166
6.5.1 Assigning LoRa spreading factors to end devices 167
6.5.2 Unconfirmed vs confirmed upstream data 169

6.5.2.1 Single gateway LoRaWAN network 169
6.5.2.2 Multi gateway LoRaWAN networks 172

6.5.3 Downstream data traffic 174
6.6 Related work . 176
6.7 Discussion . 179
6.8 Conclusion . 180
References . 181

7 Conclusions and perspectives 185
7.1 Summary and conclusions . 187
7.2 Outlook . 189

A Integrating LoRaWAN networks into the Web of Things via device
virtualization 193
A.1 Introduction . 193
A.2 RESTful Web services for data sharing and control of LoRaWAN

end devices . 194
A.3 Binary data encoding over LoRaWAN 195

A.3.1 Proof of concept demonstration 196
A.4 Conclusion . 197

List of Figures

1.1 Application domains of the Internet of Things (image courtesy of
the Internet of Things (IoT) course at Ghent University) 3

1.2 Resource-constrained sensing devices from the Wireless Sensor
Network (WSN) research community. 5

1.3 In the Web of Things (WoT), applications interact via RESTful
requests and responses over the Internet regardless of the underly-
ing network technology (image courtesy of ‘Building the Web of
Things’) . 7

1.4 In the Web Thing Model, Web Things are categorized into four
different levels depending on their functionality (image courtesy
of http://model.webofthings.io/) 9

1.5 Internet protocols and REST architecture for the resource-constrained
Web of Things . 11

1.6 Common architecture of Low Power Wide Area Networks (LPWANs):
network gateways offer LPWAN-specific APIs in order to integrate
LPWAN devices into applications and services 14

1.7 Situating the various chapters of this dissertation in a resource-
constrained IoT network architecture 19

2.1 A generic Internet of Things system 36
2.2 Five IoT scenarios mapped to the generic IoT system from figure 2.1 38
2.3 The concept of distributed intelligence 41
2.4 Architecture for sensor function virtualization in the Internet of

Things . 43
2.5 Infrastructure at different locations throughout the Internet works

together to provide sensor function virtualization in the Internet of
Things . 44

2.6 Three different integration strategies for cloud-based SFV 45
2.7 IETF protocol stack for low power and lossy networks in the In-

ternet of Things . 47
2.8 A CoAP request/response message exchange showing resource dis-

covery and data retrieval . 48
2.9 Two SFV modules providing emulated resources (EMU) and a

mirror server abstraction (MS) 50

http://model.webofthings.io/

viii

2.10 SFV at a trusted gateway provides DTLS termination, access con-
trol and caching . 52

3.1 Anatomy of a typical CoAP request and response. 65
3.2 The full DTLS handshake. 67
3.3 In a smart building scenario, there is a wide variety of different

users. Constrained devices are unable to offer all necessary se-
curity and application features to cater to these users. In the ap-
proach followed by this work, unconstrained systems (e.g., border
routers (BRs)) assist by offering these missing features. CBOR:
Concise Binary Object Representation, ACL: Access Control List. 73

3.4 Secure Service Proxy: design. 77
3.5 Cooja network topology: four CoAP(s) servers (6, 7, 8, 9) are

located two hops away from the RPL border router. 88
3.6 Transaction times and energy usage of the CoAPs servers for the

three gateway configurations (End-to-End (E2E), first Termination
(TER1), n-th Termination (TER)) and the Plain Text CoAP refer-
ence case (PLT). 90

3.7 Representative RPL network topology: the node under study, node
#50, is situated two hops from the border router, node #152. . . . 91

3.8 Evaluation setup: a variable number of CoAPs clients observe one
of two resources on either the virtual host (SSP) or the sensor
node (E2E) . 93

3.9 Total energy expenditure for node #50 per five seconds interval for
end-to-end (E2E) CoAPs observation versus CoAPS observation
through the Smart Service Proxy (SSP) 94

3.10 Number of exchanged packets for node #50 per five seconds inter-
val for end-to-end (E2E) CoAPs observation versus CoAPS obser-
vation through the Smart Service Proxy (SSP) 95

3.11 Notification loss ratios as measured at the CoAPs clients for end-
to-end (E2E) CoAPs observation versus CoAPS observation through
the Smart Service Proxy (SSP) 97

4.1 Our approach serves users web interfaces of embedded web ser-
vices on constrained devices. 107

4.2 System overview . 107
4.3 Evaluation setup: 6LoWPAN Zolertia Z1’s (red) and 802.11 WLAN

nodeMCUs (gray) as constrained devices. Raspberry Pi as appli-
cation proxy. Red arrows indicate CoAP exchanges, black arrows
HTTP exchanges. Solid lines indicate IPv6 datagrams, dashed
lines IPv4. 110

4.4 Device discovery via the RD endpoint lookup interface 111
4.5 Rendering .well-known/core of a constrained device 112

ix

4.6 Different templates are rendered depending on the resource type of
the target CoAP resource: e.g. ibcn.temp and ibcn.light are shown
here. 113

4.7 CDFs of load times for different proxy configurations 114

5.1 Isolated vertical platforms hinder cross-vendor service delivery . . 122
5.2 Problem statement: As each domain of the IoT comes with its own

set of IoT devices, protocols, standards, data formats and connec-
tivity options, service providers are forced to integrate a multitude
of different technologies when developing cross-domain services. 123

5.3 A typical request/response exchange between a CoAP client and
server . 126

5.4 CoAP mirror server: clients and sleeping endpoints can communi-
cate in an asynchronous fashion 127

5.5 Virtual devices in the cloud represent their real heterogeneous coun-
terparts . 128

5.6 The access and abstraction layers of the design enable uniform
access to heterogeneous constrained IoT devices. 129

5.7 Two Raspberry Pi’s and an 802.15.4 wireless sensor network op-
erating 6LoWPAN form the evaluation setup for our cloud platform 131

5.8 Cumulative distribution function of response times for confirmable
CoAP POST requests . 135

5.9 Left: stacked bar plot of median energy usage per category. Right:
box plot of total energy usage. 137

5.10 Sum of packets received and transmitted for different communica-
tion models . 138

5.11 Proof of concept: components and setup 139
5.12 (1)+(2): Crane tracker updates access layer mapping. (3)-(6):

CoAP request to device abstraction (3) triggers corresponding ac-
cess layer request (4). 141

5.13 Control and management dashboard: the user is presented with a
list of devices and resources. The user can access data collected
from resources, retrieve a new resource representation or update a
resource. 141

5.14 The dashboard presents a table with collected data of a waste bin
tracker to the user . 142

6.1 Architecture of LoRaWAN networks (image courtesy of Semtech) 156
6.2 Downlink receive window timing for LoRaWAN class A end devices156
6.3 LoRaWAN ns-3 module overview: class A end devices, gateways

and the network server . 159
6.4 Block diagram of LoRa PHY baseband implementation: sender,

AWGN channel and receiver . 160
6.5 Curve fits used for the LoRa PHY error model in ns-3. 163
6.6 Finite state machine of the LoRaWANPhy class in ns-3 164

x

6.7 The LoRaWANMac FSM consists of three states for gateways and
seven states for class A end devices 164

6.8 Positions for one (cross), two (circles) and four (rectangles) gate-
ways in ns-3 simulations . 167

6.9 Packet delivery ratios for various spreading factor assignments strate-
gies . 168

6.10 Spreading factor allocation to end devices for PER strategy (0.01) 169
6.11 PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC)

and confirmed (CON) upstream messages in a single gateway Lo-
RaWAN network. 170

6.12 PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC)
and confirmed (CON) upstream messages in a two gateway Lo-
RaWAN network. 173

6.13 PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC)
and confirmed (CON) upstream messages in a four gateway Lo-
RaWAN network. 174

A.1 LoRaWAN end devices are abstracted as virtual CoAP servers to
facilitate data exchange and control in the WoT 194

List of Tables

1.1 An overview of the targeted research challenges per chapter in this
dissertation. 20

3.1 The proxy offers a number of functionalities, called adapters, that
are hosted on virtual devices. The list of adapters that were imple-
mented at the time of this work are shown in this table. 81

6.1 LoRa PHY parameters for BER simulations 161
6.2 Exponential curve fit parameters for the LoRa PHY error model in

ns-3 . 162
6.3 caption . 171
6.4 End devices at a specific data rate for LoRaWAN networks with

one, two and four gateways . 172
6.5 Packet delivery ratios of downstream data messages 175
6.6 Packet delivery ratios of upstream messages in the presence of

downstream data . 176

List of Acronyms

0-9

6lo IPv6 over Networks of Resource-constrained Nodes

6LoWPAN IPv6 over Low power WPAN

A

ACL Access Control List

API Application Programming Interface

B

BMS Building Management System

C

CBOR Concise Binary Object Representation

CoAP Constrained Application Protocol

CoRE Constrained RESTful Environments

D

DI Distributed Intelligence

DNS Domain Name System

DTLS Datagram Transport Layer Security

xiv

G

GPRS General Packet Radio Service

GUI Graphical User Interface

GW Gateway

H

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

I

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version six

IPSO Internet Protocol for Smart Objects

IT Information Technology

J

JSON JavaScript Object Notation

L

LAN Local Area Network

LLN Low-Power and Lossy Network

xv

LoRaWAN LoRa Wide Area Network

LPWA Low Power Wide Area

lpwan IPv6 over Low Power Wide-Area Networks

LPWAN Low Power Wide Area Network

M

M2M Machine-to-Machine

MAC Medium Access Control

Mbps Megabits per second

MQTT Message Queuing Telemetry Transport

MTU Maximum Transmission Unit

N

NFV Network Function Virtualization

O

OS Operating System

P

PKI Public Key Infrastructure

PSK Pre-Shared Key

Q

QoS Quality of Service

R

RAM Random Access Memory

xvi

RD Resource Directory

RDC Radio Duty Cycle

REST Representational state transfer

RFC Request For Comments

ROLL Routing Over Low power and Lossy networks

ROM Read Only Memory

RPK Raw Public Key

RPL IPv6 Routing Protocol for Low-Power and Lossy Networks

S

SCHC Static Context Header Compression

SDO Standards Development Organization

SFV Sensor Function Virtualization

SOA Service-oriented Architecture

SoTA State-of-The-Art

SSP Secure Service Proxy

T

TCP Transmission Control Protocol

U

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identifier

W

WAN Wide Area Network

WG Working Group

xvii

WoT Web of Things

WPAN Wireless Personal Area Network

WSAN Wireless Sensor and Actuator Network

WSN Wireless Sensor Network

W3C World Wide Web Consortium

WWW World Wide Web

Samenvatting
– Summary in Dutch –

Het Internet der dingen (IoT) belooft tal van bedrijfsprocessen te hervormen door
(alledaagse) objecten te verbinden, data over onze omgeving te verzamelen en be-
slissen te nemen en uit te voeren op basis van deze gecapteerde data. Via ‘big data’
analyse, verwachten we nieuwe informatie te kunnen afleiden uit de stormvloed
aan data afkomstig van intergeconnecteerde dingen. Deze nieuwe informatie zal
ons in staat stellen om onze omgeving beter te doorgronden en zal daardoor leiden
tot beter geı̈nformeerde beslissingen. Verder wordt er verwacht dat het Internet
der dingen zal leiden tot nieuwe bedrijfsmodellen omwille van de goedkope mo-
nitoring en aansturing aan de hand van intergeconnecteerde objecten. In fabrieken
wordt er verwacht dat geconnecteerde machines de automatisatie verder zullen
opvoeren en de efficiëntie van productieprocessen zullen verbeteren. In de ver-
zekeringssector wordt er verwacht dat intergeconnecteerde objecten zullen leiden
tot verbeterde veiligheid, beveiliging en verliespreventie. In de gezondheidszorg
worden er geconnecteerde producten verwacht die nieuwe gezondheids- en fit-
nessdiensten zullen aanbieden met het oog op het verlagen van de kost van gezond-
heidszorg en het verhogen van de kwaliteit van de aangeboden zorg. Naast deze
voorbeelden, belooft het IoT ook tal van andere sectoren te beı̈nvloeden: transport
en goederenvervoer, slimme gebouwen en domotica, nutsvoorzieningen, landbouw
en vele anderen.

Vandaag worden de meeste geconnecteerde producten ontworpen voor één
specifieke verticale markt waardoor hun werking beperkt wordt tot een gesloten
ecosysteem. Vaak staan producenten zelfs weigerachtig tegenover integratie met
externe systemen, omdat zij dit percipiëren als risicovol voor hun concurrentiepo-
sitie. Deze fragmentatie van het IoT is een groot probleem omdat het horizontale
platformen, die kunnen communiceren, samenwerken en programmeren over al-
lerlei toestellen ongeacht hun producent, model of toepassingsdomein, verhindert
om de IoT markt te betreden. De naadloze interoperabiliteit vereist voor zulke
horizontale platformen, is vitaal om het succes en het potentieel van het IoT op
lange termijn te verzekeren en te realiseren. De gefragmenteerde situatie van het
IoT is in vele opzichten vergelijkbaar met het begin van het internet, toen vele
pakketswitchingtechnologieën elkaar bekampten voor marktaandeel.

Het Web der dingen (WoT) werd voorgesteld als een oplossing voor dit frag-
mentatieprobleem. Het neemt de succesvolle webstandaarden, technologie en
hulpmiddelen van het hedendaagse wereld wijde web (WWW) en past deze toe

xx SAMENVATTING

op het interconnecteren van dingen. In het WoT model stellen dingen hun dien-
sten en data ter beschikking via RESTful programmeringsinterfaces (APIs) en dit
ongeacht hun producent, toepassingsdomein of connectiviteitstechnologie. Door-
dat het bouwen van RESTful APIs door middel van de traditionele TCP/HTTP
protocollen moeilijk en soms zelfs onhaalbaar is voor toestellen met gelimiteerde
mogelijkheden, heeft de Internet Engineering Task Force (IETF) het Constrained
Application Protocol (CoAP) gestandaardiseerd. Dergelijke toestellen zijn door-
gaans gelimiteerd in hun grootte, kostprijs, rekenvermogen, geheugencapaciteit,
connectiviteit en voedingsbron. CoAP maakt het mogelijk om RESTful inge-
bedde web services te implementeren in IoT toestellen met gelimiteerde moge-
lijkheden op een gestandaardiseerde manier. De term Constrained RESTful envi-
roments (CoRE) (gelimiteerde RESTful omgevingen) verwijst naar het onderdeel
van het IoT dat Representational State Transfer (REST) toepast op intergeconnec-
teerde dingen met gelimiteerde mogelijkheden.

Hoewel de standaardisatie van CoAP een belangrijke stap is naar het verwe-
zenlijken van het in mogelijkheden gelimiteerde WoT, heeft deze ook aanleiding
gegeven tot een aantal nieuwe en interessante vragen tijdens het inzetten van CoAP
in gelimiteerde netwerken en toestellen. Dit proefschrift bestudeert uitdagingen en
adoptiebarrières gerelateerd aan de integratie van in mogelijkheden beperkte toe-
stellen in het WoT. Zodoende is het hoofddoel van dit doctoraatsonderzoek het
oplossen van openstaande problemen en het wegnemen van adoptiebarrières van
open web standaarden in CoRE. Door deze technische uitdagingen het hoofd te
bieden, hoopt dit onderzoek bij te dragen aan de adoptie van open webstandaarden
in het in mogelijkheden gelimiteerde IoT. Enkel door te bouwen op open stan-
daarden en systemen kan het IoT evolueren van de gefragmenteerde toestand van
vandaag naar een toekomst waar alles met elkaar verbonden zal zijn.

Een eerste verzameling uitdagingen betreft de impact van alles met elkaar te
verbinden in een open WoT op de werking van systemen met gelimiteerde moge-
lijkheden. Gezien het IoT blijft groeien, moet men opletten dat het open model
van het WoT de werking van CoRE niet verhindert. Inderdaad, bij een in om-
vang toenemend IoT zal de belasting op toestellen en netwerken met gelimiteerde
mogelijkheden ook toenemen waardoor de noodzaak van het efficiënt aanwenden
van de gelimiteerde mogelijkheden nog belangrijker zal worden. Gekoppeld aan
deze groei, is de nood aan alomvattende en schaalbare beveiligingsmechanismen
in CoRE die authenticatie, autorisatie, afscherming van gevoelige informatie en
vertrouwelijkheid aanbieden. Sommige van deze beveiligingsaspecten zijn moei-
lijk te realiseren in CoRE omwille van de gelimiteerde mogelijkheden. Dit proef-
schrift presenteert Distributed Intelligence (gedistribueerde intelligentie, DI) als
een oplossingsmethode voor deze technische uitdagingen. DI herkent dat reken-
kracht kan verdeeld worden over het internet en dat hierdoor gelimiteerde syste-
men kunnen worden bijgestaan in hun werking. Meer specifiek stelt de virtualisatie
van gelimiteerde toestellen op krachtigere systemen ons in staat om gelimiteerde
toestellen uit te breiden met nieuwe functionaliteiten. Dit bevordert de beveili-
gingsmechanismen en het efficiënt aanwenden van de beperkte mogelijkheden.
Dit werk presenteert de Secure Service Proxy (SSP) die door middel van het inzet-

SUMMARY IN DUTCH xxi

ten van adapters op virtuele toestellen er in slaagt om gelimiteerde toestellen uit
te breiden in mogelijkheden. Adapters zijn modulaire blokken van functionaliteit
die RESTful aanvragen en antwoorden verwerken via CoAP. De evaluatie van de
SSP toont aan dat de proxy schaalbare authenticatie en verfijnde autorisatie brengt
naar gelimiteerde toestellen, terwijl het de kost van sessie gebaseerde beveiliging
in termen van energieverbruik en communicatievertraging vermindert. De evalua-
tie toont ook dat de SSP erin slaagt om de belasting op de gelimiteerde systemen
te verminderen en de capaciteit van gelimiteerde netwerken te verhogen door het
combineren van resource-aanvragen.

Een andere groep van adoptiebarrières wordt veroorzaakt door de beperkte
bruikbaarheid van gelimiteerde toestellen in CoRE. Voor eindgebruikers toont deze
beperkte bruikbaarheid zich in de afwezigheid van gebruikersinterfaces ter onder-
steuning van de interactie met gelimiteerde toestellen. Dit proefschrift presenteert
een methode voor het genereren van grafische gebruikersinterfaces door middel
van web templates. Deze methode stelt gebruikers in staat om gelimiteerde toe-
stellen te bevragen en aan te sturen aan de hand van welbekende web technologie
in hun (mobiele) webbrowser. Uit het standpunt van softwareontwikkelaars be-
treft de beperkte bruikbaarheid het ontbreken van verwachte eigenschappen op
gelimiteerde toestellen. Dit gebrek manifesteert zich bijvoorbeeld in de afwezig-
heid van semantische beschrijvingen van web services en de beperkte aanpasbaar-
heid van gelimiteerde toestellen doordat het updaten van firmware vaak omslachtig
of onmogelijk is. Om deze problemen op te lossen werd de hierboven vermelde
virtualisatie techniek toegepast, bv. voor het emuleren van CoAP observe en het
aanbieden van semantische beschrijvingen. Door het virtualiseren van RESTful re-
sources, is het mogelijk om ontbrekende functionaliteit toe te voegen en bestaande
functionaliteit te updaten zonder de nood aan een kostelijk updatemechanisme op
de gelimiteerde toestellen.

De diversiteit in connectiviteitstechnologieën, communicatiemodellen en ap-
plicatiemodellering vormt de basis voor de derde kwestie behandeld in dit proef-
schrift. Aangezien legacy technologieën nog vele jaren zullen blijven bestaan in
het IoT, is het noodzakelijk om deze technologieën te integreren in CoRE. Verder
bestaan er binnen CoRE ook meerdere mogelijkheden voor het modelleren van
communicatie (bv. push vs. pull) en applicaties (bv. het mirror server model).
Deze diversiteit is hinderlijk voor softwareontwikkelaars die horizontale diensten
wensen te ontwikkelen die (gelimiteerde) geconnecteerde objecten combineren uit
meerdere systemen. Dit proefschrift presenteert een cloud platform ter bevorde-
ring van de integratie in services van heterogene (gelimiteerde) IoT toestellen en
communicatiemodellen door middel van een uniforme, op open standaarden ge-
bouwde toestelabstractie. Een driedelige evaluatie toont aan dat het platform slaagt
in het verminderen van communicatievertraging, in het verbergen van heterogene
communicatiemodellen en dat het platform eenvoudig kan geı̈ntegreerd worden in
externe systemen.

In zijn voortdurende groei, breidt het WoT uit naar nieuwe connectiviteits-
technologieën. Low Power Wide Area Networks (LPWANs) zijn een voorbeeld
van een dergelijke technologie die belooft om connectiviteit voor enorme hoeveel-

xxii SAMENVATTING

heden (gelimiteerde) apparaten te voorzien. Terwijl de lpwan IETF werkgroep
het gebruik van IPv6 en CoAP over LPWANs standaardiseert, is het belangrijk
om de vermeende voordelen van deze nieuwe technologieën kritisch te bestude-
ren. Meer bepaald onderzoekt dit proefschrift de bewering dat LoRa Wide Area
Networks (LoRaWANs), een populaire LPWAN technologie, bidirectionele com-
municatie kan voorzien voor vele duizenden toestellen per gateway. Door middel
van de gedetailleerde modellering van LoRaWAN in een netwerksimulator, werd
de schaalbaarheid van LoRaWAN onderzocht. Uitgebreide simulaties tonen dat
de radio-duty cyclus beperkingen van gateways nefast zijn voor het afleveren van
berichten met bevestiging in grootschalige netwerken, dit omwille van het ontbre-
ken van tijdige downstream bevestigingen. Hoewel het verhogen van het aantal
gateways de aflevering kan verbeteren, blijven de strenge radio-duty cyclus beper-
kingen van gateways problematisch. Omwille van deze reden dient er karig om-
gesprongen te worden met berichten met bevestiging in grootschalige LoRaWAN
netwerken.

Samengevat presenteert dit proefschrift verscheidene methodes ter bevordering
van de integratie van gelimiteerde WoT toestellen in applicaties en diensten. Het
onderzoek bestudeerde de onderwerpen van efficiëntie, bruikbaarheid en schaal-
baarheid van gelimiteerde RESTful omgevingen. Dit proefschrift kan beschouwd
worden als een kookboek met omvangrijke recepten voor het oplossen van ope-
rationele problemen in gelimiteerde RESTful omgevingen. Het distributed intel-
ligence concept en de virtualisatie aanpak zijn de hoekstenen van dit werk. Het
proefschrift omschrijft en bewijst hun waarde in de context van CoRE door het
filteren van (ongewenst) verkeer, het combineren van resource-aanvragen, het toe-
voegen van virtuele resources en andere functionaliteit, het verbeteren van authen-
ticatie en autorisatie en het efficiënter inzetten van beperkte middelen. Bijgevolg
heeft dit doctoraatsonderzoek een bescheiden maar significante bijdrage geleverd
aan het doel van een open en veilig WoT waar vele, heterogene (gelimiteerde)
toestellen naast elkaar bestaan en succesvol samenwerken.

Summary

The Internet of Things (IoT) promises to revolutionize numerous business pro-
cesses by interconnecting (everyday) objects, collecting information about our en-
vironment and taking and enacting decisions based on this information. Through
big data analysis, it is expected that new information can be drawn from the flood
of data produced by interconnecting things. Such information will enable us to
more thoroughly understand our environment and to make more informed deci-
sions. Additionally, it is anticipated that the IoT will lead to new business models
due to the low cost monitoring and actuation offered by connected products. In
manufacturing, connected machines are expected to further improve automation
and boost efficiency. In insurance, connected things are expected to lead to im-
proved safety, security and loss prevention. In healthcare, connected products will
offer new health and fitness services thereby aiding in reducing cost. The IoT is
expected to impact many other domains as well, including transportation and lo-
gistics, building automation and smart home, utilities, agriculture and many others.

Today, many connected products are designed to operate in a specific vertical
market and to operate in a closed ecosystem. Often vendors are even reluctant to
support integration with third parties, as this is perceived as a loss in competitive
position and therefore in value. This fragmentation is a major issue as it hinders
horizontal platforms from entering the market. A major benefit of these horizon-
tal platforms is the integration of a variety of different devices, regardless of the
model, the manufacturer and the application domain of the device. The seamless
interoperability required for such horizontal platforms, is vital to the long term
success and effectiveness of the IoT. In many ways, the fragmented state of the
IoT is comparable to the early days of the Internet where many packet switched
networks were competing for market share.

The Web of Things (WoT) has been proposed as a solution to this problem
of fragmentation. It takes the successful web standards, technology and tools of
today’s World Wide Web (WWW) and applies them to interconnecting things. In
the WoT paradigm, things expose their services and data over RESTful APIs re-
gardless of their make, vendor, application domain or connectivity technology. As
building RESTful APIs with the traditional TCP/HTTP protocols has proved chal-
lenging and often infeasible for resource-constrained devices, the Internet Engi-
neering Task Force (IETF) has standardized the Constrained Application Protocol
(CoAP), which brings RESTful embedded web services to resource-constrained
IoT devices. Typically such devices are subject to limitations on their size, finan-
cial cost, processing power, memory size, connectivity and energy source. The

xxiv SUMMARY

result is referred to as Constrained RESTful Environments (CoRE), which is the
subset of the IoT that focuses on resource-constrained devices employing the Rep-
resentational state transfer (REST) paradigm.

While the standardization of CoAP is a crucial stepping stone to realizing
the resource-constrained WoT, it has also introduced new and interesting ques-
tions when deploying CoAP in resource-constrained networks and devices. This
dissertation studies challenges and adoption barriers related to the integration of
resource-constrained devices in the WoT. As such the main goal of this PhD has
been to solve open issues and remove barriers for the adoption of open standards in
CoRE. By providing technical solutions to these problems, this dissertation hopes
to increase the adoption rate of open web standards in the resource-constrained
IoT. Only by relying on open standards based systems can the IoT move from its
fragmented state today to a future where everything is interconnected.

A first set of challenges relates to the impact of connecting everything to ev-
erything in an open WoT on the operation of resource-constrained systems. As
the growth of the IoT continues, one has to be careful that the open nature of the
WoT does not impede the operation of CoRE. Indeed, as the IoT grows, the load
on resource-constrained systems will grow as well and the need for efficient uti-
lization of the limited resources will grow more stringent. Coupled to this growth,
is the need for holistic and scalable security mechanisms in CoRE that offer au-
thentication, authorization, shielding of sensitive information and confidentiality.
Some of these security aspects are difficult to obtain in CoRE due to the limited
resource available. This dissertation presents Distributed Intelligence (DI) as a
method for solving these technical challenges. DI recognizes that processing may
be distributed throughout the Internet and as such may assist resource-constrained
systems. More specifically, device virtualization enables non-constrained systems
to extend resource-constrained devices with new features that assist in efficient
resource utilization and holistic security. The Secure Service Proxy (SSP) pre-
sented in this work deploys adapters on virtual devices in order to extend resource-
constrained devices with new features. Adapters are modular blocks of function-
ality that operate on RESTful requests and responses (via CoAP). The evaluation
of the SSP shows that the proxy brings scalable authentication and fine-grained
authorization to resource-constrained devices, while reducing the costs of session-
based security in terms of power consumption and communication delay. It also
shows that the SSP manages to reduce resource consumption and increase network
capacity by combining resource requests.

Another group of adoption barriers stems from the limited usability of resource-
constrained devices in CoRE. For end users, this limited usability manifests itself
in the lack of a User Interface (UI) for interacting with resource-constrained de-
vices. This dissertation presents a Graphical User Interface (GUI) rendering agent
by means of web templates, thereby enabling users to interact with constrained
devices via well-known web technology through their (mobile) browser. From the
point of view of developers the limited usability pertains to missing features on
resource-constrained devices that are taken for granted on conventional web sys-
tems. For example, resource constraints make it difficult to offer semantic descrip-

SUMMARY xxv

tions of web services and hinder devices from adapting to long term changes as
firmware updates might be cumbersome. To address these challenges, the afore-
mentioned device virtualization technique was applied to offer new functional-
ity (e.g. emulate resource observation and offer semantic resource descriptions).
This dissertation applied resource virtualization to implement missing features and
to update the functionality of certain resources over time without the need for ex-
pensive update mechanisms on resource-constrained devices.

The diversity in connectivity technologies, communication models and appli-
cation modeling techniques forms the third issue addressed in this dissertation. As
many (legacy) technologies will continue to exist in the IoT, it will be needed to
integrate these (legacy) technologies with CoRE. Additionally, within CoRE there
also exists some freedom in modeling communication (e.g. push vs pull) and struc-
turing applications (e.g. the mirror server model). This diversity is troublesome for
service developers wanting to integrate resource-constrained devices from multiple
systems. To address this problem, this dissertation presents a cloud-based platform
to facilitate the integration of heterogeneous constrained IoT devices and commu-
nication models into services by means of a uniform, open standards-based device
abstraction. A threefold evaluation demonstrates that the platform improves la-
tency, is effective at hiding heterogeneous communication models and is easy to
integrate into services developed by third parties.

In its continuous growth, the WoT is expanding to new network technolo-
gies. Low Power Wide Area Networks (LPWANs) are an example of such a new
technology and promise to bring low data rate connectivity to vast amounts of
(resource-constrained) devices. While the lpwan IETF working group is standard-
izing the use of IPv6 and CoAP over LPWANs, it is important to evaluate the ben-
efits claimed by these LPWANs. Specifically, this dissertation studies the claim
that LoRa Wide Area Networks (LoRaWANs), a popular LPWAN technology,
may provide bidirectional connectivity to many thousands of devices per gateway.
Via detailed modeling in the ns-3 network simulator, this dissertation has studied
the scalability claims of LoRaWAN. Extensive simulations have shown that the
radio duty cycle restrictions of gateways are detrimental to the delivery ratio of
confirmed messages, due to the inability to send timely downstream acknowledg-
ments. While increasing the gateway density does show a significant increase in
packet delivery ratios of confirmed messages, it can not compensate completely for
the stringent duty cycle restrictions of gateways. As a result, confirmed messages
should be used only sparsely in large scale networks.

To conclude, this dissertation presents several methods for improving the inte-
gration of resource-constrained WoT devices into applications and services. The
research focuses on the topics of efficiency, usability and scalablity of resource-
constrained RESTful environments. This dissertation can be considered as a cook-
book with extensive recipes to address operational concerns of Constrained REST-
ful Environments. Specifically, the distributed intelligence concept and the device
virtualization approach are the two cornerstones of this work. This dissertation de-
scribes and shows the value they can add in (secure) CoRE by filtering (unwanted)
traffic, combining resource requests, adding virtual resources and other function-

xxvi SUMMARY

ality, improving authentication and reducing resource usage. In doing so, this PhD
made a modest but significant contribution to the goal of an open, secure WoT,
where many, heterogeneous (resource-constrained) devices co-exist and interoper-
ate.

1
Introduction

“I think it’s much more interesting to live not knowing than to have answers which
might be wrong. I have approximate answers and possible beliefs and different
degrees of uncertainty about different things, but I am not absolutely sure of any-
thing and there are many things I don’t know anything about, such as whether it
means anything to ask why we’re here. I don’t have to know an answer. I don’t
feel frightened not knowing things, by being lost in a mysterious universe without
any purpose, which is the way it really is as far as I can tell.”

– Richard Feynman (1918 - 1988)

1.1 Background

This section introduces the technical background and terminology that are used
throughout this dissertation. As the Internet of Things (IoT) has become a broad
concept, it is clarified and defined in alignment with the research presented in
this dissertation. Next, the subset of the IoT that focuses on resource-constrained
systems and networks is introduced. The background then continues to discuss the
Web of Things (WoT) and the Internet standards for the resource-constrained WoT
which are relevant to this dissertation. Finally, Low Power Wide Area Networks
(LPWANs), a novel network technology, are introduced.

2 CHAPTER 1

1.1.1 Internet of Things

The Internet of Things term is traditionally attributed to Kevin Ashton who, while
working on supply chain management at Procter & Gamble (P&G), coined the
term in 1999. As part of a supply chain management system, Ashton equipped
items with RFID tags and coupled the RFID system to the Internet. While the term
was only introduced in 1999, already nine years earlier in 1990 - just one year after
the introduction of the World Wide Web (WWW) - John Romkey created a toaster
that could be turned on and off over the Internet using TCP/IP. Of course back
then the Internet was very much smaller than it is today and repeating the same
exercise today would probably lead to your toaster being targeted by malicious
parties within minutes 1. In the beginning of the previous decade, the IoT started
gaining mainstream media attention with the proposition of an RFID alternative
to barcodes, (at the time futuristic) Internet refrigerators and the advent of small
sensors equipped with microchips and RF transceivers. Noteworthy in the research
community, was the first European IoT conference which was held in March 2008.

According to Cisco, one of the largest vendors in IT and networking products,
the IoT was born somewhere between 2008 and 2009 when more things were con-
nected to the Internet than people. In industry, a group of companies founded the
IPSO alliance in 2008 to promote the use of the Internet Protocol (IP) in networks
of smart objects. The year 2011 saw the public launch of IPv6, the successor to
the IPv4 protocol, by large companies such as Facebook, Google and Akamai on
January 12th: the World IPv6 Day. Since the beginning of this decade, big play-
ers such as Intel, Cisco, Google and Amazon have jumped on the IoT bandwagon
by launching new company departments, acquisitions and other investments. To-
day, the strategy of every big tech company takes the IoT into consideration. This
is primarily motivated by the large potential for growth in this market. A global
IoT market report by Gartner [1] forecasts the economic value-add (which rep-
resents the aggregate benefits that businesses derive through the sale and usage
of IoT technology) to be $1.9 trillion across sectors and the incremental revenue
stemming for IoT suppliers to exceed $300 billion in 2020. The biggest sectors
are expected to be manufacturing, healthcare and insurance. The report expects
an accelerated growth in the number of connected things, reaching 26 billion IoT
units by 20202. Anticipated innovations include improved safety, security and loss
prevention in the insurance industry as well as new business models based on real-
time data. The healthcare sector is anticipated to benefit significantly from a large
range of health and fitness services supported by the IoT. Finally, connected sen-
sors are expected to lead to value creation in utilities, transportation and agriculture
by improving efficiency.

1http://www.zdnet.com/article/iot-devices-can-be-hacked-in-minuteswarn-researchers/
2A 2015 forecast by Gartner [2] has corrected the number of connected things to 20.8 billion con-

nected devices by 2020.

http://www.zdnet.com/article/iot-devices-can-be-hacked-in-minuteswarn-researchers/

INTRODUCTION 3

Apart from the three sectors briefly discussed above, IoT products are expected
to be found across a wide range of different application domains. An overview is
presented in figure 1.1. Buildings (homes, offices) will be equipped with IoT tech-
nology in order to reduce the consumption of resources (e.g. electricity, heating),
to improve the experience of people (e.g. via automation) and to reduce opera-
tional expenditures (e.g. by more efficient processes, such as predictive mainte-
nance). In smart cities, IoT technology can provide monitoring and actuation for
a city’s infrastructure (power, water and road networks) in order to increase the
efficiency of these networks and can improve the quality of life of the city’s citi-
zens (e.g. by pollution and noise monitoring, traffic control, parking monitoring,
etc.). Utility companies will rely on smart metering and smart grids to provide de-
tailed monitoring of energy production (by wind, solar, etc.) and consumption (in
homes, offices, vehicles, factories) in order to balance supply and demand as soci-
ety continues to move to renewable, but volatile sources of energy production 3. In
healthcare, connected medical products may be used to monitor a patient’s status
remotely (thereby reducing load on medical personnel and infrastructure) and to
assist elderly in living independently at home. ‘Quantified self’ is another exam-
ple of eHealth where smart wearables allow to monitor one’s life style, habits and
health.

Internet
of Things

InternetInternet

Smart metering

Industrial
automationTransportation

Health

Building Automation
Smart Home

Logistics

Remote
monitoring

Smart cities

Figure 1.1: Application domains of the Internet of Things (image courtesy of the IoT
course at Ghent University)

In the transport and logistics sector, connected trackers provide tracking and
tracing of goods. Similarly, the status of the vehicular fleet and other equipment,
the behavior of drivers and maintenance can be tracked more accurately in order
to improve efficiency and reduce operational costs. Connected and autonomous

3In February 2017, the Flemish made the controversial announcement to start rolling out smart
electricity meters in 2019 over a period of fifteen years.

4 CHAPTER 1

cars promise to increase road safety, while reducing traffic congestion and pol-
lution. In manufacturing, connected products and increased automation enable
factories to monitor and collect real-time information from production lines and
supply chains. This in turn allows for more informed and faster decisions in or-
der to optimize production or to perform predictive maintenance. In agriculture,
soil and crop sensors monitor environmental conditions and allow more effective
and efficient fertilization. In animal farms, animal trackers aid in detecting and
preventing diseases by monitoring the health status of livestock. Such initiatives
help to increase a farm’s output, while lowering costs by reducing waste, labor and
livestock sickness. Finally, in the retail sector, retailers can shape their outlets and
advertisements to meet the expectations of their customers by tracking shopping
behavior and individual product sales via product monitoring.

It is clear that the IoT presented above is a diverse field and that many different
incarnations will co-exist. Since its inception in 1999, the IoT has continuously
grown in scope to the point where today it has become an ambiguous term with
different meanings to different parties. Indeed, there exist over thirty definitions
of the IoT stemming from research reports, white papers, books, etc 4. In the
interest of clarity, this dissertation narrows down the IoT by adopting the following
definition proposed by Morgan Stanley in [3]:

“The Internet of Things is the combination of sensors, actuators, dis-
tributed computing power, wireless communication on the hardware
side and applications and big data/analytics on the software side.”

This definition was chosen because, apart from big data, it highlights the technical
aspects of the IoT that are relevant to this dissertation. According to this defi-
nition, sensors quantify our surroundings and transmit their measurements wire-
lessly to interested applications via the Internet. Applications transform data into
knowledge about the physical world, which is used to make decisions and drive a
wide range of processes (as briefly discussed for the different application domains
above). Apart from monitoring, our environment may also be affected via actua-
tors, which are connected to the Internet. The term distributed computing power in
the definition refers to the ability that IoT software may reside on any Internet con-
nected system, be it a cloud-based system, a gateway system or a system deployed
in the fog. This dissertation further narrows down the scope of the IoT by focusing
on the resource-constrained WoT. These terms are discussed in the following two
sections.

1.1.2 The resource-constrained Internet of Things

The work in this dissertation focuses on the resource-constrained Internet of Things.
Computing systems belonging to this category are designed specifically for par-

4The interested reader may find a list on https://www.postscapes.com/internet-of-things-definition/

https://www.postscapes.com/internet-of-things-definition/

INTRODUCTION 5

ticular applications, which set them aside from other general-purpose computing
systems (such as mobile phones and desktop computers). As these systems fulfill
one specific function, hardware and software are often designed together to be pro-
ficient at that one specific function. Due to their close integration with our environ-
ment and their connectivity, they are also known as networked embedded systems.
Despite their specialized nature, some degree of flexibility of network embedded
systems is still required as bug and security fixes and adapting to changes in their
environment are essential in order to guarantee their long-term operation.

In the IoT, our surroundings will be permeated with sensors and actuators. In
this vision, networked embedded systems have to be produced at a massive scale
and low cost. In order to keep unit cost low, the amount of resources available
to these systems is limited which leads to the term ‘resource-constrained’ sys-
tems. RFC 7228 [4] lists the following limitations as common constraints: limited
processing power, limited maximum code complexity, limits on the size of state
and buffers, limits on available power and limited user interface and accessibility
in deployment. This standard also introduces the term ‘constrained nodes’ to re-
fer to resource-constrained networked embedded systems. This dissertation uses
the terms ‘constrained nodes’ and ‘constrained devices’ interchangeably. When

Dot Mote Smart Dust Tmote Sky Zolertia Z1 Rmoni RM090

Figure 1.2: Resource-constrained sensing devices from the WSN research community.

these constrained devices form a communication network, this network in turn
also exhibits constraints such as unreliable communications, low and fluctuating
throughput, unstable topologies, asymmetric link characteristics and others. Such
networks are known as ‘constrained-node networks’, but this text often refers to
such networks as ‘constrained networks’. Finally, a classification of constrained
devices based on their characteristics is also presented in RFC 7228. The work
in this dissertation focuses on class 1 devices, which are defined as having data
sizes (RAM) in the order of 10 KiB and code sizes (ROM) in the order of 100 KiB.
While these devices are unable to house a traditional, full-fledged Internet proto-
col stack, they do have sufficient resources to run specialized Internet stacks with
lightweight protocols that have low memory footprints and low parsing complex-
ity. As a point of reference, modern notebooks ship with working memory sizes
ranging between 4 and 16 GiB, which is roughly six orders of magnitude larger
than the data size at the disposable of class 1 devices. Class 1 devices are interest-
ing as they are characterized by having a very low power usage and very low cost.
Indeed, RFC 7228 mentions that gains made available by increases in transistor

6 CHAPTER 1

count and density due to Moore’s law are more likely to be invested in reductions
of costs and power requirements rather than into continual increases in comput-
ing power. Minimizing power usage is crucial, as energy storage elements (e.g.
batteries) make up a considerable fraction of the cost of class 1 devices.

1.1.3 TCP/IP for the resource-constrained Internet of Things

In terms of communication protocols, the baseline for the IoT is the Internet Pro-
tocol. IP has proven to be an open, interoperable, scalable, ubiquitous and stable
technology with billions of connected devices since its inception in the nineteen-
eighties. The plethora of services running over the IP today is a testament to the
versatility of the protocol. The end-to-end design of the IP differs from other
(legacy) technologies where complex, vendor-specific gateways map applications
to the Internet. More recently, in 2011, IANA, the body in charge of the IPv4
addressing space, allocated the last two unreserved /8 address blocks to regional
bodies. Since then four of the five regional bodies have also exhausted their al-
location space, with AFRINIC estimated to reach exhaustion in 2018. With the
standardization of version six of the IP (IPv6), the address space has been hugely
extended from 4.3 billion to 3.4 x 1038 addresses. For comparison, the number of
grains of sand on all beaches in the world is estimated to be only 7.5 x 1018, the
number of stars in the universe is estimated to be in the order of 1022 and on earth
we would be able to assign approximately 667 x 1038 addresses per square meter
of surface area. Clearly, one does not have to worry about address exhaustion in
IPv6 in the near future. While the adoption rate of IPv6 has been slow in the past,
it has accelerated in recent years now that IPv4 has reached address exhaustion.

In networked applications, the Transmission Control Protocol (TCP) is a com-
mon protocol for transporting a stream of octets between applications running on
Internet hosts (e.g. all web traffic runs over TCP). Early work [5] [6] identified the
inability of TCP to distinguish between losses due to congestion and other losses as
troublesome in wireless networks, where lossy links might be caused by bit errors,
link breakage or handoffs rather than congestion. This leads to degradation in TCP
throughput in wireless networks. Despite these issues [7], machine-to-machine
communications via TCP/IP is commonly used in cellular GPRS networks to-
day 5. Despite its popularity in cellular M2M networks, the throughput of TCP
is lower than that of User Datagram Protocol (UDP) in low-power wireless net-
works where the bidirectional communication required by TCP may be hindered
by multi-hop and asymmetric links [8]. Work by Adam Dunkels et al. [9] [10]
has illustrated the feasibility of implementing a highly optimized TCP/IP stack
on memory-constrained sensor nodes and indeed Dunkel’s implementation, uIP,
remains one of the most popular network stacks in wireless sensor and actuator

5Note that some countries have plans to phase out their 2G cellular networks.

INTRODUCTION 7

networks today [11]. In the same work [10], the authors identify the following
issues with TCP/IP in sensor networks: very large header overhead for small pack-
ets, bad performance over links with high bit-error rate (e.g. wireless links) and
energy consumption at every hop of the retransmission path in the end-to-end re-
transmissions. Some of the issues with TCP/IP in wireless (sensor) networks have
been the focus of later work at the Internet Engineering Task Force (IETF), as will
be discussed in section 1.1.5.

1.1.4 Web of Things

On the Internet, the TCP/IP stack is often used in tandem with the Hypertext Trans-
fer Protocol (HTTP) when developing web-based applications. The success of web
services on the Internet has drawn researchers to apply similar techniques for de-
veloping applications in wireless sensor and actuator networks [12] [13]. These
works demonstrated that web services may be used to build highly-interoperable
systems where multiple applications may share a common sensor network. The
authors also highlighted that a key challenge in using web services on resource-
constrained sensor nodes is the energy and bandwidth overhead of the structured
data formats used in web services. Specifically, TCP/IP and structured XML data
increases the number of messages as well as the message size and hence the en-
ergy consumption [13]. The authors suggest a number of improvements to mitigate
some of these issues, but the header overhead and verbose data formats remain an
issue in low-power networks.

Figure 1.3: In the WoT, applications interact via RESTful requests and responses over the
Internet regardless of the underlying network technology (image courtesy of ‘Building the

Web of Things’)

8 CHAPTER 1

Around the same time, applying the Representational state transfer (REST)
principle [14] for integrating physical things into the Web has been proposed
in [15] [16] and [17], leading to the term the ‘Web of Things’. In the WoT
philosophy, resources on things are available through standard Web mechanisms.
Figure 1.3 provides an example where a weather station and a fire alarm expose
RESTful resources with unique URIs that can be queried to retrieve their readings.
Similarly, a door lock offers a resource for manipulating its locked status. The au-
thor of [15] argues that the big advantage of the WoT is that things can be treated
like any other Web resource, which allows them to be used in different contexts
and applications. This is in stark contrast to exposing real-world data and func-
tionality through proprietary Application Programming Interfaces (APIs), which
leads to tightly-coupled systems and often limits interactions to a very specific set
of potential users [16] [17]. In the WoT, things can be used in a much more open
way, similar to web services on the traditional Internet. The authors of [16] state
that “In the WoT, popular web languages (e.g. Python, PHP, node js) can be used to
easily build applications involving smart things and users can leverage well-known
Web mechanism (e.g. browsing, searching, caching and linking) to interact with
and share these devices”. The versatility of the WoT is illustrated on the left in
figure 1.3, where different types of applications employ web technology to com-
municate with things. These works laid the foundation for the Web of Things, with
the caveat that the HTTP/TCP/IP protocols common at the time may be too chatty
and too complex and that traditional data formats may be too verbose for use in
low-power networks.

Today the WoT is an active field of research, with e.g. annual international
workshops [18] and the recently chartered World Wide Web Consortium (W3C)
WoT Working Group (WG) 6. The WoT WG is in the process of standardizing a
WoT architecture, a Web Thing description and a programming interface for run-
ning scripts on Web Things. Additionally, the WG is chartered to provide exam-
ples of Thing descriptions for common platforms and protocols. Some members
of the WG are also working on a model of a Web Thing 7 that describes methods
for integrating Things in the Web with a focus on HTTP, WebSocket, JSON and
JSON-LD. This model, shown in figure 1.4, represents a Web Thing as an onion,
where each shell adds additional requirements. Extended Web Things additionally
support the REST API and data model defined in the Web Thing Model. As a
result, Extended Web Things can be automatically included in complex systems.
The Web Thing Model suggests implementing semantic extensions via JSON-LD
and schema.org. While the Web Thing Model document focuses on HTTP, the
document states that other RESTful protocols, such as CoAP (see further), may be
used as well.

6https://www.w3.org/2016/12/wot-wg-2016.html
7http://model.webofthings.io

http://model.webofthings.io

INTRODUCTION 9

Figure 1.4: In the Web Thing Model, Web Things are categorized into four different levels
depending on their functionality (image courtesy of http://model.webofthings.io/)

1.1.5 Internet standards for web technology in constrained de-
vices and networks

As detailed in the previous sections, the large overhead of TCP/IP headers in wire-
less sensor networks leads to wasting energy in low-power networks. Additionally,
the end-to-end retransmission scheme in TCP meant that some segments would be
transmitted more than once over low-power links, further increasing energy us-
age. Furthermore, with the introduction of IPv6 the problem of header overhead
became even more severe now that the IP header grew from 20 to 40 bytes to
accommodate the 128 bit addresses. In order to address these issues in a global
forum, various initiatives were started at the IETF, i.e. the Internet standardization
body.

1.1.5.1 IPv6 over Low Power Wireless Personal Area Networks

In 2005, the IPv6 over Low power WPAN (6LoWPAN) WG was chartered to
investigate the use of IPv6 in IEEE 802.15.4 Wireless Personal Area Networks
(WPANs). Specifically, the WG defined packet formats for the ‘Transmission of
IPv6 packets over IEEE 802.15.4 WPAN Networks’ in Request for Comments
(RFC) 4944 [19] and 6282 [20]. These standards define an adaptation layer which
implements framing, header compression, address generation and
fragmentation [21]. The header compression scheme can in some cases compress
the IPv6 header down to only four bytes and was later extended to also include
UDP header compression. The fragmentation scheme satisfies the IPv6 minimum
MTU requirement of 1280 octets. Furthermore, the WG optimized the IPv6 neigh-
bor discovery procedure for use in low-power WPANs in RFC 6775 [22]. A com-
prehensive technical overview of 6LoWPAN is presented in [23]. In the research
community Durvy et al. presented the IPv6 compatible successor of uIP, named
uIPv6, and released it as open source [24]. Within the year, uIPv6 was extended
with an implementation of 6LoWPAN named sicslowpan [25]. In [26] the author

http://model.webofthings.io/

10 CHAPTER 1

shows how 6LoWPAN header compression reduces the UDP/IPv6 header over-
head to 7 bytes for link-local communication and to between 12 and 28 bytes
for global communications8. Thread, the home automation protocol launched by
Google, Samsung, ARM and others in 2014, builds on top of 6LoWPAN. Atmel,
a large semiconductor manufacturer, has been shipping 6LoWPAN as part of their
ultra-low power wireless hardware platforms since 2013. ARM has been shipping
6LoWPAN as part of the networking stack of their mbed platform for Cortex-
M microcontrollers since 2014. Note that the ’IPv6 over Networks of Resource-
constrained Nodes (6lo)’ IETF WG is continuing the work of the 6LoWPAN WG
for other link-layer technologies than IEEE 802.15.4 WPANs.

1.1.5.2 The Constrained Application Protocol

In 2010, the Constrained RESTful Environments (CoRE) IETF WG was char-
tered to provide a framework for resource-oriented applications intended to run on
constrained IP networks. Targeted applications included monitoring of simple sen-
sors (e.g. temperature sensors), controlling actuators (e.g. light switches, Heating,
Ventilation and Air Conditioning (HVAC) control) and device management [27].
Key design principles included embracing the REST philosophy, mandatory sup-
port for the UDP transport protocol, compact header and message formats, asyn-
chronous messaging, multicast support, resource discovery and an application-
independent mapping from CoAP to an HTTP REST API. Since its inception, the
WG has published seven RFCs, with more in the pipeline. The WG has been very
active with numerous interoperability testing campaigns (known as plugfests) and
WG meetings in order to reach a broad consensus on various protocol design is-
sues.

RFC 7252 [28] standardizes the Constrained Application Protocol (CoAP) and
defined message models, message formats and serialization, option encoding, mes-
sage (re)transmission schemes, request/response codes, URI schemes, multicast
support, security considerations and HTTP-CoAP cross-protocol proxying. Logi-
cally, CoAP is comprised of two layers: a messaging and a request/response layer.
The messaging layer deals with UDP and the asynchronous nature of interactions,
while request/response layer interactions use method and response codes. As UDP
has no built-in reliability nor deduplication, CoAP defines a deduplication and an
optional, lightweight retransmission scheme as part of the messaging layer. For
improved compactness, the CoAP header is binary encoded as opposed to the US-
ASCII character encoding used in HTTP headers. Additionally, options in the
CoAP header use a delta encoding scheme to improve the compactness of the
CoAP header even further. Similarly to HTTP, CoAP defines request methods
and response codes that enable the REST paradigm. It also defines a media type

8An uncompressed UDP/IPv6 header is 48 bytes long

INTRODUCTION 11

registry in order to provide an enumeration of common media types. In terms of
security, the CoAP specification mentions both transport (see further) and object
security. A thorough overview of CoAP is presented in [23] and [29]. Note that
relevant CoAP principles are introduced where necessary in the following chap-
ters.

6LoWPAN
networkInternet

Gateway
Edge router

Proxy

CONSTRAINED ENVIRONMENTNON-CONSTRAINED ENVIRONMENT

HTTP

TCP

IPv6

802.11,
802.3…

CoAP

UDP

IPv6 over
6LoWPAN

802.15.4

Payload Payload

REST

OR

CoAP

UDP

IPv6

802.11,
802.3…

Payload

HTTP
HTTP CoAP

CoAP

CoAP

CoAP

DTLS TLS DTLS

Figure 1.5: Internet protocols and REST architecture for the resource-constrained Web of
Things

Figure 1.5 present an overview of the REST architecture resulting from the de-
ployment of the aforementioned Internet standards in a 6LoWPAN network. Con-
strained devices are running IPv6 via the 6LoWPAN adaptation layer underneath
CoAP over UDP or DTLS. A cross protocol-proxy translates between the uncon-
strained and the constrained world, mapping TCP/HTTP to UDP/CoAP. In paral-
lel, Internet hosts are able to interact directly with constrained devices in the con-
strained network via CoAP. These Internet hosts can be both unconstrained (e.g.
cloud management platform) and constrained systems (e.g. switch activating a
light bulb). The use of transport layer security is optional and use case dependent.
For constrained networks other than 6LoWPAN, the physical and the adaptation
layers would be different, while the other layers remain the same.

Since the standardization of CoAP, a number of interesting extensions have
been published by the working group. RFC 6690 [30] defines a web linking format
for use in constrained environments. The CoRE link format enables web servers to

12 CHAPTER 1

describe hosted resources, their attributes as well as relationships between links.
The observe protocol extension [31] enables clients to retrieve a representation
of a resource and keep this representation updated by the server over a period of
time. Due to the absence of such an extension in HTTP, inefficient methods such as
HTTP long polling were hacked in later on. Using CoAP block-wise transfer [32],
large CoAP messages may be split into multiple messages thereby avoiding (poten-
tially expensive) lower layer fragmentation or circumventing limitations on buffer
sizes. RFC 8075 [33] provides guidance for implementing a cross-protocol that
translates the HTTP protocol to the CoAP protocol. Specification [34] defines
how CoAP should be used in a group communication context. Finally, PATCH
and FETCH, two new request methods that allow partial resource manipulation
and access respectively, are defined in RFC 8132 [35].

At the time of this dissertation the CoRE WG has adopted a total of ten WG
drafts, which are in various stages of the standardization process. One mature draft
is the CoRE Resource Directory [36], which is a service that hosts descriptions of
resources hosted on other servers thereby supporting resource and device lookups.
The ‘Reusable Interface Definitions’ draft is another long-time draft that defines
a set of resource interface descriptions applicable for use in constrained environ-
ments [37]. In an effort to introduce concise data formats, the WG has adopted
the ‘Media Types for Sensor Measurement Lists’ draft [38]. A similar effort is the
standardization of the Concise Binary Object Representation (CBOR) [39], which
follows a JSON data model and has an extremely low code size and fairly small
messages sizes. Drafts that were recently adopted by the WG include a publish/-
subscribe broker over CoAP, simple congestion control for CoAP and link bindings
in CoAP (similar to bindings in ZigBee).

Kuladinithi et al. present the open source libcoap library and compare its per-
formance to that of various HTTP clients in [40]. An experimental evaluation per-
formed over a GPRS network showed that UDP-based protocols outperform TCP-
based protocols in constrained networks due to using a lower number of messages
when retrieving resources. In the case of UDP, CoAP packets were 18% smaller
than HTTP packets while CoAP adds reliability and request/response matching
when compared to HTTP over UDP. In [41] Ludovici et al. present TinyCoAP,
a coap implementation optimized for TinyOS, and compare its performance to
that of TCP/HTTP and UDP/HTTP. In terms of memory occupation TinyCoAP
uses slightly more RAM than the TCP/HTTP implementation (due to at compile
time memory allocation), while ROM usage is significantly lower. The authors
show that TinyCoAP outperforms TCP/HTTP in terms of delay and energy usage,
even when persistent TCP connections are used. In terms of delay and energy
usage, the performance of UDP/HTTP is close to UDP/CoAP but as previously
mentioned UDP/HTTP is lacking reliability, deduplication and request/response
matching. In [42] Kovatsch et al. present a system architecture for CoAP-based

INTRODUCTION 13

IoT cloud services. Surprisingly, the Californium cloud framework shows 33 to
64 times higher throughput than state-of-the-art HTTP web servers common in
conventional cloud services. The authors state that the low overhead of CoAP
significantly improves backend service scalability for vast numbers of connected
devices. In industry, ARM’s mbed platform has added CoAP support in recent
years. Thethings.io, an IoT platform for deploying scalable and flexible IoT solu-
tions, also supports CoAP endpoints as things.

Historically, CoAP has been deployed mostly over conventional wireless tech-
nologies such as IEEE 802.11 (known as Wi-Fi), IEEE 802.15.4 and cellular M2M
networks. As the IoT continues to broaden in scope, new wireless connectivity
technologies emerge which has triggered the community to apply the principles of
CoRE to these new networking technologies. The next subsection considers one
example of such a new and promising network technology: LPWANs.

1.1.6 Low Power Wide Area Networks

In an effort to bring affordable connectivity to low-power devices spread over
very large geographical areas, new network technologies known as Low Power
Wide Area Networks (LPWANs) are gaining considerable momentum. LPWANs
promise to bring Machine-to-Machine (M2M) communication to use cases where
conventional cellular and short range wireless technologies were unsuited due
to cost, range or power limitations. Promising applications include smart cities
and track&trace logistics. Some of the main differences between LPWANs and
WPANs (such as the aforementioned IEEE 802.15.4) are the longer range, the
lower data rates, the smaller maximum packet sizes and the lower power require-
ments common in LPWANs. Additionally, most LPWA technologies adopt a
model where the network infrastructure (gateways, backend systems) is in the
hands of a network operator.

One issue with LoRa Wide Area Network (LoRaWAN) and LPWANs in gen-
eral, is that these technologies do not connect their Things to the Internet. Instead,
it is common to define an interface for two-way data access which is very similar
to the APIs offered on WSN gateways. This hinders the usability of low-power
devices connected via LPWANs in new application and services. Figure 1.6 il-
lustrates the network architecture for popular LPWAN technologies such as Lo-
RaWAN and SigFox. In this architecture services have to integrate LPWAN spe-
cific (and sometimes even network specific) APIs in order to communicate with
LPWAN devices.

Very recently, interest in bringing IPv6 to LPWA networks has started to grow.
Since last year, work is underway at the IETF ’IPv6 over Low Power Wide-Area
Networks (lpwan)’ WG to accomplish just that. This is reminiscent of the efforts
of the 6LoWPAN WG to enable IPv6 in IEEE 802.15.4 networks. So far the

14 CHAPTER 1

Network
Gateway

Devices

GW

GW

GW API

APP 1

….

APP N

API

API

API

LPWAN Internet

Figure 1.6: Common architecture of LPWANs: network gateways offer LPWAN-specific
APIs in order to integrate LPWAN devices into applications and services

lpwan WG has adopted a header compression scheme and fragmentation method
for IPv6 and UDP for use in various LPWA networks [43]. The group has also
adopted a draft that applies the same compression scheme, named Static Context
Header Compression (SCHC), to CoAP [44]. Initial tests show a drastic reduction
in packet lengths, as in the best case SCHC is able to compress an IPv6/UDP
header to only one byte. One open issue with SCHC is the efficient management of
the static context (i.e. compression rules) on the LPWA devices. SCHC will likely
only be effective in cases where changes to the static context are very infrequent,
e.g. in scenarios where the communication of the LPWA device is limited to a
fixed number of Internet hosts.

1.2 Research challenges

This dissertation tackles a number of research challenges, all of which stem from
the limitations inherent to resource-constrained devices and networks. When tack-
ling these challenges, the perspective of Constrained RESTful Environments, as
sketched in the background section, is taken. As such, the main focus of this dis-
sertation has been to solve a number of open issues faced in CoRE in order to
remove barriers to adopting an open and interconnected WoT.

1.2.1 Efficient resource utilization in an open Web of Things

In order for an open WoT, where everything interacts with everything, to be feasi-
ble and indeed successful in constrained environments a number of potential pit-
falls and problems have to be anticipated and solved. One challenge relates to the
efficient utilization of the limited resources in low-power networks. Specifically,
one should avoid unnecessarily depleting resources (e.g. computation, energy, ra-
dio time) in constrained components where it can be avoided. Inefficient resource
usage could hamper the operation of constrained components and the scalability

INTRODUCTION 15

of constrained networks. Indeed, considering the enormous growth of the IoT one
has to be careful that the wanted, open character of the WoT does not compromise
its operation in resource-constrained environments. To this end, this dissertation
studies a number of solutions to help guarantee the proper operation of constrained
environments in an open and growing WoT.

1.2.2 Holistic security in an open Web of Things

Holistic and usable security mechanisms in resource-constrained environments is
a second important challenge in an open WoT. Holistic approaches should target
all facets of security such as: authentication, authorization, shielding sensitive in-
formation, protecting privacy, data confidentiality and other requirements. Some
of the mechanisms required to meet these requirements might be difficult to im-
plement on resource-constrained devices alone due to resource limitations. One
example is a Building Management System (BMS) where many users, each with
different privileges, are present in the building. In such a setting, enforcing in-
dividual access policies to the services offered by the building requires scalable
authentication and fine-grained authorization which is challenging to implement
solely on resource-constrained systems. Rather than inventing new security proto-
cols, this dissertation uses the state-of-the-art to build a scalable and comprehen-
sive security solution for use in resource-constrained environments.

1.2.3 Heterogeneity in the resource-constrained Internet of
Things

The large scope of the IoT entails that it will comprise many different approaches
and technologies: e.g. already today there exists a wide range of connectivity
technologies, communication patterns, protocols, application modeling techniques
and other technical elements for building IoT products. In an open IoT, this het-
erogenity harms interoperability as resource-constrained systems are unable to be
compatible with all of the different technologies available. Problems with inter-
operability between different IoT systems form a major hurdle to the vision of an
interconnected and open IoT [45]. This dissertation proposes a method for ab-
stracting a number of heterogeneous aspects of specific IoT technologies, with
the aim of improving interoperability. Specifically, the focus lies on different in-
teraction models, employing standardized vs proprietary protocols and dynamic
network access.

1.2.4 Usability of constrained devices

A third set of challenges pertains to the limited usability of resource-constrained
devices. As devices will measure and potentially impact our environment, users

16 CHAPTER 1

expect easy methods for interacting with constrained devices. The current trend
towards one mobile app per IoT product is problematic as the numbers of IoT
products continues to rise. Instead, this dissertation studies how existing web tech-
nology can be applied to accommodate user interactions with constrained devices.

Secondly, integrating constrained devices into applications can sometimes be
challenging due to missing features on these devices. This is usability from a
software development and integration point of view. This dissertation considers
ways of extending constrained devices with missing and/or new features in order
to facilitate their integration into software. Coupled to this is the need for the
functionality of constrained devices to evolve over time. As firmware updates can
be costly or even not supported, other methods for deploying new functionality
might become needed. This dissertation proposes such a method that outsources
certain functions to unconstrained devices while maintaining the end-to-end aspect
crucial for an open IoT.

1.2.5 Scalability of emerging LPWA technologies

As new and unproven Low Power Wide Area Network technologies are conquering
the market, a critical evaluation of their claims is necessary in order to avoid un-
expected deficiencies in future deployments. Additionally, existing open protocols
and technologies are finding their way to these new connectivity technologies (cfr.
Section 1.1.6). In order to verify such claims, the last research challenge of this
work focuses on studying the scalability of LoRaWAN LPWA networks.

1.3 Outline

This dissertation is composed of a number of publications that were realized within
the scope of this PhD. The selected publications provide an integral and consistent
overview of the work performed. The different research contributions are detailed
in Section 1.4 and the complete list of publications that resulted from this work is
presented in Section 1.5. Compared to the original publications, minimal adjust-
ments have been applied in order to correct linguistic issues, fix formatting issues
or to further clarify the content. Within this section we give an overview of the
remainder of this dissertation and explain how the different chapters are linked
together.

Chapter 2 starts by introducing the need for distributed computing and com-
munication in the IoT. We argue that the IoT requires a mix of local and remote
processing in order to realize the wide range of requirements posed by different IoT
applications. The result from deploying such distributed computing and communi-
cation is termed Distributed Intelligence (DI). Identified open challenges targeted
by DI are timely processing, offline availability, scalability in terms of users and

INTRODUCTION 17

devices, mobility of IoT systems and heterogeneity in protocols and data formats
in resource-constrained systems. Another important challenge targeted by DI is
protecting the privacy of users in the IoT, as local processing and storage may help
protect sensitive information. The chapter continues by introducing Sensor Func-
tion Virtualization (SFV) as a method for realizing DI. SFV offloads certain func-
tionality from constrained devices to unconstrained systems such as gateways, the
cloud and other (in-network) computing infrastructure. SFV has similarities with
Network Function Virtualization (NFV), which aims to virtualize the functions
of many network equipment types in order to move these functions to commodity
computing. By replacing network equipment with software, SFV enables cost sav-
ings for network operators. The main difference between SFV and NFV is their
focus: NFV focuses mostly on networking functions while the focus of SFV is
primarily on transport and application functions. A system architecture for SFV
is presented where the desired functionality is split into modules. This modular
approach facilitates at run-time management and deployment and distributed de-
ployments over multiple systems. After illustrating the architecture for a number
of deployment scenarios, the chapter is concluded by providing examples of DI in
both the constrained and the unconstrained domain for CoRE.

After the introduction of DI, the concept of SFV in the unconstrained do-
main is elaborated further by proposing the Secure Service Proxy (SSP) in chap-
ter 3. By combining ‘node virtualization’, where constrained devices are virtu-
alized at the network layer, and a reverse proxy approach, the SSP is able to en-
hance constrained devices with a wide range of functionalities. Such function-
alities are implemented as adapters, which are modular blocks of functionality
that may be instantiated on virtual devices and that process RESTful requests and
responses. Adapters for access control, caching, static resources, proxying and
response rewriting have been implemented. Additionally, virtual devices can be
extended with security primitives that overcome security-related issues common
in low-power networks such as the weak authentication and limited scalability
provided by pre-shared key and raw public key cipher suites. This approach is
reminiscent of SSL brokers common in large web-facing infrastructures, albeit
with different motivations. Two evaluations were performed to validate the effec-
tiveness of the presented SSP in the context of CoRE. The results show that the
SSP is able to provide scalable security to constrained devices while simultane-
ously reducing the resource usage of the devices. Secondly, the results also show
that by extending virtual devices the SSP is able to provide new functionalities and
to improve the performance of constrained devices and networks.

Chapter 4 studies how user interactions with constrained WoT devices can be
improved. By combining the reverse proxy approach of the SSP, an HTTP/CoAP
proxy, web templates and extensive response rewriting the presented system is able
to generate user-friendly web User Interfaces (UIs). The main goal is to provide

18 CHAPTER 1

IoT users on a mobile device with an intuitive UI for interacting with constrained
devices embedded in their environment. Important considerations included min-
imal impact on constrained devices and mobile devices, minimal configuration
and easy discovery and relatively easy to build UIs. Employing open web stan-
dards guarantees that the presented system is applicable across a wide range of
constrained and mobile devices, while the ubiquity of web technology guarantees
the ease of building UIs. The approach was demonstrated for web linking and for
temperature sensing and lighting control. Additionally, the use of non-blocking
template rendering led to a significant increase in UI responsiveness, which is im-
portant in constrained networks where network delays are often significant.

Chapter 5 tackles the challenge of integrating heterogeneous IoT technologies
faced by service developers looking to add value on top of multiple IoT systems.
This work stemmed from the observation that there exists a wide variety of connec-
tivity options, protocols and communication models in track & trace IoT systems
for logistics and transport. By abstracting the underlying technology specifics by
means of a uniform, open standard-based RESTful interface hosted in the cloud,
the integration of heterogeneous IoT technologies into services is improved with-
out burdening (constrained) IoT devices nor service developers. A functional eval-
uation shows that the cloud platform is able to abstract two different communi-
cation models (push and pull). Additionally, a proof of concept dashboard was
built on top of the cloud platform where device management, data access and con-
trol were implemented for logistics tracking, waste bin tracking and environmental
monitoring systems.

To address the poor integration of LoRaWAN networks into the WoT, ap-
pendix A presents an extension of chapter 5 that represents LoRaWAN end devices
as virtual CoAP servers, which host resources for publishing upstream messages
and collecting downstream messages. By adding structure to the binary LoRaWAN
payloads, one LoRaWAN message could be deserialized into multiple CoAP re-
sources and vice versa. While this integration work has not been published, it did
lead us to question the scalability of LoRaWAN, particularly in the presence of
downstream traffic. Hence, the premise for the final chapter 6 was born.

Chapter 6 takes a step back from CoRE and studies the emerging low-power,
long-range connectivity technology LoRaWAN. Specifically, claims regarding
the scalability of large-scale LoRaWAN networks are assessed by modeling Lo-
RaWAN in a network simulator. The results show that LoRaWAN networks are
limited by interference as their size approaches thousands of devices. This may be
somewhat mitigated by increasing the gateway density, which leads to a significant
rise in the packet delivery ratio in saturated networks. The results also indicated
that the downstream capacity in LoRaWAN networks is severely limited due to
radio duty cycle restrictions on the gateways. Simulations revealed the detrimental
effect of this limited downstream capacity on the packet delivery ratio of confirmed

INTRODUCTION 19

upstream messages.
Figure 1.7 presents a graphical overview of the various chapters in this disser-

tation. Distributed intelligence spreads functionality over various non-constrained

Internet

Cloud

LLN Y

LLN X GW

Distributed
intelligence (Ch.2)

Secure Service
Proxy (Ch.3)

LoRaWAN
scalability (Ch.6)

Figure 1.7: Situating the various chapters of this dissertation in a resource-constrained
IoT network architecture

systems throughout the network. The SSP is one example of DI that employs de-
vice virtualization for realizing SFV. In the figure it is shown on the network
edge of an Low-Power and Lossy Network (LLN) that deploys the CoRE REST-
ful protocol stack as sketched in the previous section. The topic on interactions
between users and resource-constrained devices is circled in red. The fifth chapter
studies the integration of heterogeneous devices and communication models in the
resource-constrained IoT by means of the cloud. The final chapter focuses on the
scalabilty of a specific type of LLN: LoRaWAN.

Finally, table 1.1 lists the research challenges from section 1.2 and indicates
which challenges are targeted per chapter. Together with the table of contents, it
may aid in browsing this dissertation.

20 CHAPTER 1

Table 1.1: An overview of the targeted research challenges per chapter in this dissertation.

Ch.2 Ch.3 Ch.4 Ch.5 Ch.6 App.A
An open Web of Things:
- Efficient utilization of re-
sources

• •

- Scalable and fine-grained
security

•

Heterogeneity in the
resource-constrained IoT:
- Hide heterogeneity and im-
prove interoperability

• • •

Usability of constrained de-
vices:
- Better user interactions •
- Extending feature set •
- Evolving over time •
Emerging LPWA networks:
- Standardized interactions •
- Scalability •

1.4 Research contributions

In Section 1.2, the problems and challenges for an open Web of Things in Con-
strained RESTful Environments (CoRE) are formulated. They are tackled in the
remainder of this dissertation. This PhD dissertation introduces the concepts of
Distributed Intelligence and Sensor Function Virtualization as the two main meth-
ods for tackling the identified challenges. By applying and studying these con-
cepts in the context of CoRE, the dissertation shows how DI and SFV enable an
open WoT. Specifically, the following topics are studied: efficient resource utiliza-
tion, extending constrained devices with new functionality, scalable authentication
and authorization, user interactions with constrained devices and heterogeneous
devices and communication models. Through thorough analysis, the dissertation
quantifies the impact of the developed concepts for each of the aforementioned top-
ics. Evaluation shows that DI improves resource utilization by caching responses,
filtering traffic, combining resource requests and re-using security sessions. Fur-
thermore, SFV is indeed able to extend constrained devices with new function-
ality in the form of new resources and user interfaces. This dissertation also ap-
plied sensor virtualization to develop a platform for integrating heterogeneous de-
vices and communication models. Finally, the adoption of open web standards
in LPWANs prompted this dissertation to study how the request-response pattern,

INTRODUCTION 21

which is common in RESTful web services, is handled by LPWANs. The study
shows the severe limitations of LPWANs for handling downstream traffic, which
is problematic for a bi-directional protocol such as CoAP.

The following list presents the research contributions of this dissertation on a
per chapter basis:

• Analysis of the need and enablers for distributed computing and communi-
cation in the constrained IoT (Ch. 2).

– Identification of open challenges in distributed IoT systems that may
benefit from distributed intelligence.

– Introduction of SFV as an enabler for distributed intelligence.

– Application of SFV in both the constrained and unconstrained domains
of CoRE.

– Illustration of how SFV may solve open challenges in distributed IoT
systems.

• Design and implementation of a CoAP(s) proxy for a secure and smart Web
of Things (Ch. 3).

– Design of the adapter chain concept for deploying modular function-
ality on virtual devices.

– Design of a RESTful interface for managing virtual devices and their
adapter chains.

– Implementation of the proxy using the CoAP++ framework, which was
realized using Click Router [46], a C++ based modular framework that
can be used to realize any network packet processing functionality.

– Evaluation of the security termination method in the Cooja WSN net-
work simulator.

– Evaluation of CoAP observe aggregation on the w–iLab.t testbed 9.

• Methods for improving user interactions in the constrained WoT (Ch. 4).

– Formulation of five requirements for improving user interactions with
embedded web services in low-power networks.

– Design of an application layer proxy that renders web interfaces to
facilitate interaction with embedded web services on constrained de-
vices.

– Small-scale Wireless Sensor and Actuator Network (WSAN) evalua-
tion of functionality and interface responsiveness.

9http://doc.ilabt.iminds.be/ilabt-documentation/wilabfacility.html

22 CHAPTER 1

• Development of a cloud-based platform for integrating heterogeneous de-
vices and communication models in the constrained IoT (Ch. 5).

– Design and implementation of a cloud-based software architecture based
on virtual device abstractions.

– Evaluation of scalability and latency of virtual device abstraction ap-
proach.

– Evaluation of integrating two different communication models via the
platform.

– Real world proof of concept demonstration of how the platform in-
tegrates heterogeneous IoT technologies in the logistics and transport
sector.

• Critical assessment of the scalability of large-scale LoRaWAN LPWA net-
works (Ch. 6).

– Construction of a complex baseband model of the LoRa physical layer.

– Construction of a LoRA PHY error model from BER simulations for
different spreading factors and coding rates.

– Modeling LoRaWAN networks in the ns-3 discrete event network sim-
ulator:

∗ Integration of the LoRa PHY error model.
∗ Implementation of the LoRaWAN MAC layer for class A end de-

vices.
∗ Implementation of a rudimentary LoRaWAN network server.

– Evaluation of LoRaWAN scalability for various network sizes and traf-
fic loads: confirmed versus unconfirmed messages, upstream versus
downstream traffic and the impact of multiple gateways.

INTRODUCTION 23

1.5 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.5.1 Publications in international journals
(listed in the ISI Web of Science 10)

1. Isam Ishaq, Jeroen Hoebeke, Floris Van den Abeele, Jen Rossey, Ingrid
Moerman and Piet Demeester. Flexible unicast-based group communica-
tion for CoAP-enabled devices. Published in the special issue on ‘ Wireless
Sensor Networks and the Internet of Things’ in Sensors, Volume 14, Issue
6, p.9833–9877, 2014.

2. Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Teklemariam, In-
grid Moerman and Piet Demeester. Sensor function virtualization to support
distributed intelligence in the internet of things. Published in Wireless Per-
sonal Communications, Volume 81, Issue 4, p.1415–1436, 2015.

3. Femke De Backere, Femke Ongenae, Floris Van den Abeele, Jelle Nelis,
Pieter Bonte, E. Clement, M. Philpott, Jeroen Hoebeke, Stijn Verstichel,
Ann Ackaert and Filip De Turck. Towards a social and context-aware multi-
sensor fall detection and risk assessment platform. Published in Computers
in Biology and Medicine, Volume 64, p.307-320, 2015.

4. Floris Van den Abeele, Jeroen Hoebeke, Ingrid Moerman and Piet De-
meester. Integration of heterogeneous devices and communication models
via the cloud in the constrained internet of things. Published in the spe-
cial issue on ‘Leveraging the Internet of Things: Integration of Sensors and
Cloud Computing Systems’ in the International Journal of Distributed Sen-
sor Networks, Volume 11, Issue 10, 2015.

5. Femke De Backere, Femke Ongenae, Frederic Vannieuwenborg, Jan Van
Ooteghem, Pieter Duysburgh, Arne Jansen, Jeroen Hoebeke, Kim Wuyts,
Jen Rossey, Floris Van den Abeele, Karen Willems, Jasmien Decancq, Jan
Henk Annema, Nicky Sulmon, Dimitri Van Landuyt, Stijn Verstichel, Pieter
Crombez, Ann Ackaert, Dirk De Grooff, An Jacobs and Filip De Turck.
The OCareCloudS project: toward organizing care through trusted cloud

10The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded,
the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science,
restricted to contributions listed as article, review, letter, note or proceedings paper.

24 CHAPTER 1

services. Published in Informatics for Health & Social Care, Volume 41,
Issue 2, p.159-176, 2016.

6. Girum Ketema Teklemariam, Floris Van den Abeele, Ingrid Moerman, Piet
Demeester and Jeroen Hoebeke. Bindings and RESTlets: a novel set of
CoAP-based application enablers to build IoT applications. Published in the
special issue on ‘Intelligent Internet of Things (IoT) Networks’ in Sensors,
Volume 16, issue 8, 2016.

7. Jetmir Haxhibeqiri, Floris Van den Abeele, Ingrid Moerman, Jeroen Hoe-
beke. LoRa Scalability: a Simulation Model Based on Interference Mea-
surements. Published in Sensors, Volume 17, Issue 6, 2017.

8. Floris Van den Abeele, Ingrid Moerman, Piet Demeester and Jeroen Hoe-
beke. Secure Service Proxy: A CoAP(s) Intermediary for a Securer and
Smarter Web of Things. Published in Sensors, Volume 17, Issue 7, 2017.

9. Floris Van den Abeele, Jetmir Haxhibeqiri, Ingrid Moerman and Jeroen
Hoebeke. Scalability analysis of large-scale LoRaWAN networks in ns-3.
Submitted to the IEEE Internet of Things Journal, May 2017.

1.5.2 Publications in other international journals

1. Isam Ishaq, David Carels, Girum Ketema Teklemariam, Jeroen Hoebeke,
Floris Van den Abeele, Eli De Poorter, Ingrid Moerman and Piet De-
meester. IETF standardization in the field of the Internet of Things (IoT): a
survey. Published in Published in the Journal of Sensor and Actuator Net-
works, Volume 2, issue 2, pp. 235287, 2013

1.5.3 Publications in international conferences
(listed in the ISI Web of Science 11)

1. Isam Ishaq, Jeroen Hoebeke, Floris Van den Abeele, Ingrid Moerman and
Piet Demeester. Group communication in constrained environments using
CoAP-based entities. Published in the proceedings of the IEEE International
Conference on Distributed Computing in Sensor Systems (DCOSS 2013), p.
345–350, 21–23 May 2013, Cambridge, Massachusetts, USA.

2. Floris Van den Abeele, Jeroen Hoebeke, Ingrid Moerman and Piet De-
meester. Fine-grained management of CoAP interactions with constrained

11The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.

INTRODUCTION 25

IoT devices Published in the proceedings of the IEEE Network Opera-
tions and Management Symposium (NOMS 2014), 5–9 May 2014, Krakow,
Poland.

3. Girum Ketema Teklemariam, Jeroen Hoebeke, Floris Van den Abeele, In-
grid Moerman and Piet Demeester. Simple RESTful sensor application de-
velopment model using CoAP. Published in the proceedings of the 39th IEEE
Conference on Local Computer Networks (LCN Workshops 2014), p.552–
556, 8–11 Sep. 2014, Edmonton, Canada.

4. Floris Van den Abeele, Tom Vandewinckele, Jeroen Hoebeke, Ingrid Mo-
erman and Piet Demeester. Secure communication in IP-based wireless sen-
sor network via a trusted gateway. Published in the proceedings of the 10th
IEEE International Conference on Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP 2015), p.1–6, 7–9 Apr. 2015, Singapore.

5. Enri Dalipi, Floris Van den Abeele, Isam Ishaq, Ingrid Moerman and
Jeroen Hoebeke. EC–IoT : an easy configuration framework for constrained
IoT devices. Published in the proceedings of the IEEE World Forum on
the Internet of Things (WF-IoT 2016), 12–14 Dec. 2016, Reston, Virginia,
USA.

6. Floris Van den Abeele, Enri Dalipi, Ingrid Moerman, Piet Demeester and
Jeroen Hoebeke. Improving user interactions with constrained devices in the
Web of Things. Published in the proceedings of the IEEE World Forum on
the Internet of Things (WF-IoT 2016), 12–14 Dec. 2016, Reston, Virginia,
USA.

7. Jetmir Haxhibeqiri, Abdulkadir Karagaac, Floris Van den Abeele, Wout
Joseph, Ingrid Moerman and Jeroen Hoebeke. LoRa Indoor Coverage and
Performance in an Industrial Environment: Case Study. Accepted at the
2017 IEEE 22st International Conference on Emerging Technologies and
Factory Automation (ETFA 2017), 12–15 Sep. 2017, Limassol, Cyprus.

1.5.4 Publications in other international conferences

1. Floris Van den Abeele, Jeroen Hoebeke, Isam Ishaq, Girum Ketema Tek-
lemariam, Jen Rossey, Ingrid Moerman and Piet Demeester. Demo Ab-
stract: Building embedded applications via REST services for the Internet
of Things. Published in the proceedings of the 11th ACM Conference on
Embedded Network Sensor Systems (SenSys - 2013), p. 1–2, 11–15 Nov.
2013, Rome, Italy.

26 CHAPTER 1

2. Femke De Backere, Femke Ongenae, Floris Van den Abeele, Jeroen Hoe-
beke, Stijn Verstichel, Ann Ackaert and Filip De Turck. Social-aware and
Context-aware Multi-sensor Fall Detection Platform. Published in the pro-
ceedings of the Working on Semantic Web Applications and Tools for Life
Sciences (SWAT4LS 2013), p. 1–4, 9–12 Dec. 2013, Edinburgh, UK.

3. Floris Van den Abeele, Jeroen Hoebeke, Femke De Backere, Femke Onge-
nae, Pieter Bonte, Stijn Verstichel, T. Carlier, Pieter Crombez, K. De Gryse,
S. Danschotter, Ingrid Moerman and Filip De Turck. OCareClouds: Im-
proving Home Care by Interconnecting Elderly, Care Networks and Their
Living Environments. Published in the proceedings of the 8th International
Conference on Pervasive Computing Technologies for Healthcare (Perva-
siveHealth 2014), p. 1–2, 20–23 May 2014, Oldenburg, Germany.

1.5.5 Contributions to standardization bodies

1. Bert Greevenbosch, Jeroen Hoebeke, Isam Ishaq, Floris Van den Abeele.
CoAP Profile Description Format. Published as IETF CoRE Internet draft
draft-greevenbosch-core-profile-description-02, 21 June 2013.

2. Isam Ishaq, Jeroen Hoebeke, Floris Van den Abeele. CoAP Entities. Pub-
lished as IETF CoRE Internet draft draft-ishaq-core-entities-00, 17 June
2013.

3. Shitao Li, Kepeng Li, Jeroen Hoebeke, Floris Van den Abeele, Antonio J.
Jara. Conditional observe in CoAP. Published as IETF CoRE Internet draft
draft-li-core-conditional-observe-05, 15 October 2014.

1.5.6 Patent applications

1. Jeroen Hoebeke, Floris Van den Abeele. Emulating Functionality for Con-
strained Devices. US2015365467. Koninklijke KPN N.V., iMinds VZW,
Universiteit Gent. Priority date: 28 December 2012. Publication date: 17
December 2015.

2. Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Teklemariam. Re-
ducing a Number of Server-Client Sessions. US2016006818. Koninklijke
KPN N.V., iMinds VZW, Universiteit Gent. Priority date: 28 December
2012. Publication date: 7 January 2016.

3. Jeroen Hoebeke, Girum Ketema Teklemariam, Floris Van den Abeele.
Binding Smart Objects. US2017017533. Koninklijke KPN N.V., iMinds
VZW, Universiteit Gent. Priority date: 23 December 2013. Publication
date: 19 January 2017.

INTRODUCTION 27

4. Floris Van den Abeele, Jeroen Hoebeke. Crash recovery for smart objects.
US2017005875. Koninklijke KPN N.V., iMinds VZW, Universiteit Gent.
Priority date: 23 January 2014. Publication date: 5 January 2017.

28 CHAPTER 1

References

[1] Gartner Inc. Forecast: The Internet of Things, Worldwide. Technical re-
port, Gartner, 2013. Available from: https://www.gartner.com/newsroom/id/
2636073.

[2] Gartner Inc. Gartner Says 6.4 Billion Connected ”Things” Will Be in Use in
2016, Up 30 Percent From 2015. Technical report, Gartner, 2015. Available
from: https://www.gartner.com/newsroom/id/3165317.

[3] Morgan Stanley Research Global. Blue Paper: Internet of Things
- Wearable Devices. Technical report, Morgan Stanley, 2014.
Available from: http://byinnovation.eu/wp-content/uploads/2014/11/
MORGAN-STANLEY-BLUE-PAPER{ }Internet-of-Things.pdf.

[4] C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for
Constrained-Node Networks. Technical report, IETF, 2014. Available from:
http://tools.ietf.org/html/rfc7228.

[5] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz. A comparison of
mechanisms for improving TCP performance over wireless links. IEEE/ACM
Transactions on Networking, 5(6):756–769, 1997. Available from: http://
ieeexplore.ieee.org/document/650137/, doi:10.1109/90.650137.

[6] G. Holland and N. Vaidya. Analysis of TCP Performance over
Mobile Ad Hoc Networks. Wireless Networks, 8(2/3):275–288,
2002. Available from: http://link.springer.com/10.1023/A:1013798127590,
doi:10.1023/A:1013798127590.

[7] R. Chakravorty, J. Cartwright, and I. Pratt. Practical experience
with TCP over GPRS. In IEEE Global Telecommunications Con-
ference (GLOBECOM 2002), volume 2, pages 1678–1682. IEEE,
2002. Available from: http://ieeexplore.ieee.org/document/1188483/,
doi:10.1109/GLOCOM.2002.1188483.

[8] J. W. Hui and D. E. Culler. IP is dead, long live IP for wireless sensor net-
works. Proceedings of the 6th ACM conference on Embedded network sensor
systems - SenSys ’08, page 15, 2008. Available from: http://portal.acm.org/
citation.cfm?doid=1460412.1460415, doi:10.1145/1460412.1460415.

[9] A. Dunkels, J. Alonso, and T. Voigt. Making TCP/IP viable for wireless
sensor networks, 2003.

[10] A. Dunkels, J. Alonso, T. Voigt, H. Ritter, and J. Schiller. Connect-
ing Wireless Sensornets with TCP/IP Networks. In Lecture Notes in

https://www.gartner.com/newsroom/id/2636073
https://www.gartner.com/newsroom/id/2636073
https://www.gartner.com/newsroom/id/3165317
http://byinnovation.eu/wp-content/uploads/2014/11/MORGAN-STANLEY-BLUE-PAPER{_}Internet-of-Things.pdf
http://byinnovation.eu/wp-content/uploads/2014/11/MORGAN-STANLEY-BLUE-PAPER{_}Internet-of-Things.pdf
http://tools.ietf.org/html/rfc7228
http://ieeexplore.ieee.org/document/650137/
http://ieeexplore.ieee.org/document/650137/
http://link.springer.com/10.1023/A:1013798127590
http://ieeexplore.ieee.org/document/1188483/
http://portal.acm.org/citation.cfm?doid=1460412.1460415
http://portal.acm.org/citation.cfm?doid=1460412.1460415

INTRODUCTION 29

Computer Science, pages 143–152. Springer, Berlin, Heidelberg, 2004.
Available from: http://link.springer.com/10.1007/978-3-540-24643-5{ }13,
doi:10.1007/978-3-540-24643-5-13.

[11] A. Dunkels. Contiki: Bringing IP to Sensor Networks. ERCIM News,
2009(76), 2009. Available from: http://ercim-news.ercim.eu/en76/rd/
contiki-bringing-ip-to-sensor-networks.

[12] D. Yazar and A. Dunkels. Efficient application integration in IP-based sensor
networks. In Proceedings of the First ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings - BuildSys ’09, page 43, New
York, New York, USA, 2009. ACM Press. Available from: http://portal.acm.
org/citation.cfm?doid=1810279.1810289, doi:10.1145/1810279.1810289.

[13] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny web services. In
Proceedings of the 6th ACM conference on Embedded network sensor sys-
tems - SenSys ’08, page 253, New York, New York, USA, 2008. ACM Press.
Available from: http://portal.acm.org/citation.cfm?doid=1460412.1460438,
doi:10.1145/1460412.1460438.

[14] R. T. Fielding and R. N. Taylor. Architectural styles and the design of
network-based software architectures. University of California, Irvine Doc-
toral dissertation, 2000.

[15] D. Guinard. Towards the web of things: Web mashups for embedded devices.
In In MEM 2009 in Proceedings of WWW 2009. ACM, 2009.

[16] D. Guinard, V. Trifa, and E. Wilde. A resource oriented architecture for
the Web of Things. In 2010 Internet of Things (IOT), pages 1–8. IEEE, nov
2010. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5678452, doi:10.1109/IOT.2010.5678452.

[17] E. Wilde. Putting things to REST. School of Information, 2007.

[18] S. Mayer, D. Guinard, E. Wilde, and M. Kovatsch. WoT 2016.
In Proceedings of the Seventh International Workshop on the Web of
Things - WoT ’16, pages 1–4, New York, New York, USA, 2016.
ACM Press. Available from: http://dl.acm.org/citation.cfm?doid=3017995.
3017996, doi:10.1145/3017995.3017996.

[19] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. RFC 4944: Transmis-
sion of IPv6 packets over IEEE 802.15. 4 networks, 2007. Available from:
https://tools.ietf.org/html/rfc4944.

http://link.springer.com/10.1007/978-3-540-24643-5{_}13
http://ercim-news.ercim.eu/en76/rd/contiki-bringing-ip-to-sensor-networks
http://ercim-news.ercim.eu/en76/rd/contiki-bringing-ip-to-sensor-networks
http://portal.acm.org/citation.cfm?doid=1810279.1810289
http://portal.acm.org/citation.cfm?doid=1810279.1810289
http://portal.acm.org/citation.cfm?doid=1460412.1460438
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678452
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678452
http://dl.acm.org/citation.cfm?doid=3017995.3017996
http://dl.acm.org/citation.cfm?doid=3017995.3017996
https://tools.ietf.org/html/rfc4944

30 CHAPTER 1

[20] J. Hui and P. Thubert. RFC 6282: Compression format for IPv6 datagrams
over IEEE 802.15. 4-based networks, 2011. Available from: https://tools.
ietf.org/html/rfc6282.txt.

[21] G. Mulligan. The 6LoWPAN architecture. In Proceedings of the 4th work-
shop on Embedded networked sensors - EmNets ’07, page 78, New York,
New York, USA, 2007. ACM Press. Available from: http://portal.acm.org/
citation.cfm?doid=1278972.1278992, doi:10.1145/1278972.1278992.

[22] Z. Shelby, S. Chakrabarti, E. Nordman, and C. Bormann. RFC 6775: Neigh-
bor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs). Technical report, IETF, 2012. Available from:
https://tools.ietf.org/html/rfc6775.

[23] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. De
Poorter, I. Moerman, and P. Demeester. IETF standardization in the field
of the Internet of Things (IoT): a survey. Journal of Sensor and Actuator
Networks, 2(2):235–287, 2013.

[24] M. Durvy, N. Finne, A. Dunkels, J. Abeillé, P. Wetterwald, C. O’Flynn,
B. Leverett, E. Gnoske, M. Vidales, G. Mulligan, and N. Tsiftes. Making
sensor networks IPv6 ready. In Proceedings of the 6th ACM conference on
Embedded network sensor systems - SenSys ’08, page 421, New York, New
York, USA, 2008. ACM Press. Available from: http://portal.acm.org/citation.
cfm?doid=1460412.1460483, doi:10.1145/1460412.1460483.

[25] A. Dunkels. Sicslowpan-internet-connectivity for low-power radio sys-
tems. SICS, 2008. Available from: https://www.iis.se/docs/SICS{ }
Lowpan-report.pdf.

[26] J. W. Hui. An Extended Internet Architecture for Low-Power Wireless Net-
works - Design and Implementation. PhD thesis, EECS Department, Uni-
versity of California, Berkeley, sep 2008. Available from: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-116.html.

[27] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP: An Application Protocol
for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62–67,
mar 2012. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6159216, doi:10.1109/MIC.2012.29.

[28] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. RFC 7252: Constrained
Application Protocol (CoAP), 2014. Available from: https://tools.ietf.org/
html/rfc7252.

https://tools.ietf.org/html/rfc6282.txt
https://tools.ietf.org/html/rfc6282.txt
http://portal.acm.org/citation.cfm?doid=1278972.1278992
http://portal.acm.org/citation.cfm?doid=1278972.1278992
https://tools.ietf.org/html/rfc6775
http://portal.acm.org/citation.cfm?doid=1460412.1460483
http://portal.acm.org/citation.cfm?doid=1460412.1460483
https://www.iis.se/docs/SICS{_}Lowpan-report.pdf
https://www.iis.se/docs/SICS{_}Lowpan-report.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-116.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-116.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

INTRODUCTION 31

[29] M. Kovatsch. Scalable Web Technology for the Internet of Things. PhD
thesis, ETH-Zürich, 2015. Available from: http://www.vs.inf.ethz.ch/publ/
papers/mkovatsc-2015-dissertation.pdf.

[30] Z. Shelby. RFC 6690: Constrained RESTful Environments (CoRE) Link For-
mat, 2012. Available from: https://tools.ietf.org/html/rfc6690.

[31] K. Hartke. RFC 7641: Observing Resources in the Constrained Application
Protocol (CoAP). Technical report, IETF, 2015. Available from: https://
tools.ietf.org/html/rfc7641.

[32] C. Bormann and Z. Shelby. RFC 7959: Block-Wise Transfers in the Con-
strained Application Protocol. Technical report, IETF, 2016. Available from:
https://tools.ietf.org/html/rfc7959.

[33] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk. RFC 8075:
Guidelines for Mapping Implementations: HTTP to the Constrained Ap-
plication Protocol (CoAP). Technical report, IETF, 2017. Available from:
https://tools.ietf.org/html/rfc8075.

[34] A. Rahman and E. Dijk. RFC 7390: Group Communication for the Con-
strained Application Protocol (CoAP). Technical report, IETF, 2014. Avail-
able from: https://tools.ietf.org/html/rfc7390.

[35] P. van der Stok, C. Bormann, and A. Sehgal. RFC 8132: PATCH and FETCH
Methods for the Constrained Application Protocol (CoAP). Technical report,
IETF, 2017. Available from: https://tools.ietf.org/html/rfc8132.

[36] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok. CoRE Resource
Directory. Technical report, IETF, 2017. Available from: https://tools.ietf.
org/html/draft-ietf-core-resource-directory-10.

[37] Z. Shelby, M. Vial, M. Koster, and C. Groves. Reusable Interface Defini-
tions for Constrained RESTful Environments. Technical report, IETF, 2017.
Available from: https://tools.ietf.org/html/draft-ietf-core-interfaces-09.

[38] C. Jennings, Z. Shelby, J. Arkko, A. Keranen, and C. Bormann. Media Types
for Sensor Measurement Lists (SenML). Technical report, IETF, 2017. Avail-
able from: https://tools.ietf.org/html/draft-ietf-core-senml-07.

[39] C. Bormann and P. Hoffman. RFC 7049: Concise Binary Object Repre-
sentation (CBOR). Technical report, IETF, 2014. Available from: https:
//tools.ietf.org/html/rfc7049.

[40] K. Kuladinithi, O. Bergmann, and M. Becker. Implementation of CoAP and
its Application in Transport Logistics. In Proc. IP+ SN, Chicago, IL, USA,
2011.

http://www.vs.inf.ethz.ch/publ/papers/mkovatsc-2015-dissertation.pdf
http://www.vs.inf.ethz.ch/publ/papers/mkovatsc-2015-dissertation.pdf
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7959
https://tools.ietf.org/html/rfc8075
https://tools.ietf.org/html/rfc7390
https://tools.ietf.org/html/rfc8132
https://tools.ietf.org/html/draft-ietf-core-resource-directory-10
https://tools.ietf.org/html/draft-ietf-core-resource-directory-10
https://tools.ietf.org/html/draft-ietf-core-interfaces-09
https://tools.ietf.org/html/draft-ietf-core-senml-07
https://tools.ietf.org/html/rfc7049
https://tools.ietf.org/html/rfc7049

32 CHAPTER 1

[41] A. Ludovici, P. Moreno, and A. Calveras. TinyCoAP: A Novel Constrained
Application Protocol (CoAP) Implementation for Embedding RESTful Web
Services in Wireless Sensor Networks Based on TinyOS. Journal of Sensor
and Actuator Networks, 2(2):288–315, may 2013. Available from: http://
www.mdpi.com/2224-2708/2/2/288/, doi:10.3390/jsan2020288.

[42] M. Kovatsch, M. Lanter, and Z. Shelby. Californium: Scalable cloud ser-
vices for the Internet of Things with CoAP. In 2014 International Confer-
ence on the Internet of Things (IOT), pages 1–6. IEEE, oct 2014. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
7030106, doi:10.1109/IOT.2014.7030106.

[43] A. Minaburo, L. Toutain, and C. Gomez. LPWAN Static Context Header
Compression (SCHC) and fragmentation for IPv6 and UDP. Tech-
nical report, IETF, 2017. Available from: https://tools.ietf.org/html/
draft-ietf-lpwan-ipv6-static-context-hc-03.

[44] A. Minaburo and L. Toutain. LPWAN Static Context Header Compression
(SCHC) for CoAP. Technical report, IETF, 2017. Available from: https:
//tools.ietf.org/html/draft-ietf-lpwan-coap-static-context-hc-01.

[45] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of
things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[46] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Trans. Comput. Syst., 18(3):263–297, aug 2000.
doi:10.1145/354871.354874.

http://www.mdpi.com/2224-2708/2/2/288/
http://www.mdpi.com/2224-2708/2/2/288/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7030106
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7030106
https://tools.ietf.org/html/draft-ietf-lpwan-ipv6-static-context-hc-03
https://tools.ietf.org/html/draft-ietf-lpwan-ipv6-static-context-hc-03
https://tools.ietf.org/html/draft-ietf-lpwan-coap-static-context-hc-01
https://tools.ietf.org/html/draft-ietf-lpwan-coap-static-context-hc-01

2
Sensor function virtualization to

support distributed intelligence in the
Internet of Things

This chapter argues that a combination of local and remote processing and com-
munication is necessary to meet the broad requirements of diverse Internet of
Things (IoT) applications. To this end, the concepts Distributed Intelligence (DI)
and Sensor Function Virtualization (SFV) are introduced in this chapter. This
chapter then continues to illustrate SFV in the context of Constrained RESTful
Environments (CoRE) for both the constrained and unconstrained domain. This
chapter lies the conceptional foundation for the work in chapter 3, where SFV in
the unconstrained domain is studied further.

? ? ?

Floris Van den Abeele, Jeroen Hoebeke, Girum Ketema Tekle-
mariam, Ingrid Moerman and Piet Demeester

Published in Wireless Personal Communications Volume 81 Issue 4, April
2015.

Abstract It is estimated that - by 2020 - 50 billion devices will be connected to the
Internet. This number not only includes TVs, PCs, tablets and smartphones, but

34 CHAPTER 2

also billions of embedded sensors that will make up the “Internet of Things” and
enable a whole new range of intelligent services in domains such as manufacturing,
health, smart homes, logistics, etc. To some extent, intelligence such as data pro-
cessing or access control can be placed on the devices themselves. Alternatively,
functionalities can be outsourced to the cloud. In reality, there is no single solution
that fits all needs. Cooperation between devices, intermediate infrastructures (lo-
cal networks, access networks, global networks) and/or cloud systems is needed
in order to optimally support IoT communication and IoT applications. Through
distributed intelligence the right communication and processing functionality will
be available at the right place. The first part of this paper motivates the need for
such distributed intelligence based on shortcomings in typical IoT systems. The
second part focuses on the concept of Sensor Function Virtualization, a potential
enabler for distributed intelligence, and presents solutions on how to realize it.

2.1 Introduction

Today, most of the data available on the Internet is generated by humans. With
more and more everyday objects or sensors being connected to the Internet, the
amount of data generated by things is going to increase rapidly. It is estimated that
by 2020, 50 billion devices will be connected to the Internet, outnumbering the
number of human beings on our planet [1]. This vision is commonly referred to as
the Internet of Things.

In the Internet of Things, heterogeneous objects will grasp information about
our physical world and inject it in the virtual world where it can be used as input to
all kinds of services. Depending on the type of service, a decision can be taken to
act again upon the physical world. As a result, everything around us will become
an integral part of the Internet, capable of generating and consuming information.
It is evident that the Internet of Things may have a great impact in a wide range
of application domains such as health, manufacturing, building automation, trans-
portation, smart cities, logistics, etc.

In order to connect things to the Internet, they need to be equipped with pro-
cessing and communication capabilities. In many cases these capabilities are very
limited, as these devices may need to run on batteries for several months or years
or need to be produced at an extremely low cost. Such devices are often referred to
as constrained devices, many of them belonging to Class 1 (approximately 10KiB
RAM and 100KiB ROM) as defined by the IETF lwig working group [2]. Specific
low data rate and low power communication technologies have been designed,
such as IEEE 802.15.4. Further, as typical Internet protocols had not been de-
signed for such small footprints, initial efforts to interconnect these devices to the
Internet resulted in proprietary protocols and architectures. However, their incom-
patibility with widely adopted Internet protocols has hampered their uptake and

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 35

the realization of the IoT vision.
The last few years, this mindset has been changing and many efforts have been

put into the extension of Internet technologies to constrained devices. Most note-
worthy are the efforts of the Internet Engineering Task Force, the de facto stan-
dardization organization for Internet protocols. Their initial efforts focused on the
networking layer and resulted in the integration of constrained devices and con-
strained networks in the IPv6 Internet. As a next step, they now target the efficient
integration of these devices in web services. So far, the IETF has standardized
the Constrained Application Protocol (CoAP), which can be seen as an embed-
ded counterpart of HTTP. With these technologies, it has become possible to in-
terconnect tiny objects or networks of such objects with the IPv6 Internet and to
build applications that interact with them using embedded web service technology,
bringing us one step closer to the realization of the Internet of Things.

From the above description, it becomes clear that it has been a challenge to fit
an Internet-compatible protocol stack on devices with very limited capabilities. It
required the careful design of tailored communication protocols. One can question
how far one can go to further extend these devices with additional functionalities
or intelligence typically encountered in more powerful devices, such as access
control, preprocessing of data, data formatting, resource visibility, etc. At some
point it will become technically infeasible to put additional intelligence on the
devices themselves due to their constraints. Consequently, such intelligence needs
to be outsourced to more powerful devices such as gateways, routers, neighboring
devices, the cloud, etc. In addition, as every IoT application may have different
requirements and devices may be very heterogeneous, there will be no single recipe
on how to optimally distribute this intelligence.

The optimal placement of functionalities or intelligence is only one aspect of
the whole picture. Current networks and radio technologies are very homoge-
neous, homogeneous in a sense that the resulting communication infrastructure
often offers the very same service to every application running on top of it. Look-
ing at the large number of IoT application domains or the variety of IoT applica-
tions with heterogeneous requirements within a single application domain, opti-
mal support of IoT applications also requires adaptations of the network behavior.
Whenever possible, networking elements should expose the necessary interfaces
in order to optimally configure the underlying network behavior.

Combining both aspects brings us to the concept of distributed intelligence 1

in the context of the Internet of Things: depending on the application, user and
policy requirements, it is decided where to place the intelligence to operate certain
functions and how to optimally configure the communication infrastructure.

In the remainder of the paper, we will first further motivate the need for such
distributed intelligence by identifying a number of shortcomings in typical IoT

1Not to be confused with Distributed Intelligence in the context of AI.

36 CHAPTER 2

Sensors + smart devices
(embedded processing)

Local
connectivity

Intermediate processing
(e.g. gateway) Cloud processing Global

connectivity

Figure 2.1: A generic Internet of Things system

systems in section 2.2. Section 2.3 presents Sensor Function Virtualization (SFV)
as an important enabler for realizing distributed intelligence. Before moving on
to examples of SFV, section 2.4 gives a short overview of the IETF IoT protocol
stack. This stack is used for examples of SFV in the unconstrained and constrained
domain in sections 2.5 and 2.6 respectively. Section 2.7 presents the related work
that we have identified in the literature. The paper ends with a number of conclu-
sions and future work in section 2.8.

2.2 The need for distributed intelligence

2.2.1 Generic IoT system

Figure 2.1 shows a high-level representation of a generic IoT system from a com-
munication and processing point of view. On the left there are the embedded de-
vices with some form of processing and communication capabilities. These de-
vices can be very heterogeneous in terms of energy provisioning (energy harvest-
ing, battery powered, mains powered), communication capabilities (IEEE 802.15.4,
BLE, IEEE 802.11, etc.), processing power and communication behavior (always
connected versus intermittently connected). Examples of such devices are a battery-
operated environmental sensor, a Wi-Fi weighing scale, a tracking device with a
GPRS module or even a powerful smart phone. In an IoT system, these devices
typically collect information about the physical world and, possibly after some
(limited) local processing, communicate this information to an external service or
another device for further processing.

The information is then transmitted over a local communication network, such
as a 6LoWPAN network or a WLAN network, in order to reach the Internet. On its
way out, it passes intermediate processing components such as a home gateway,
a border router or an access point. In most cases, such a component will mainly
perform some protocol translations (e.g. conversion between 6LoWPAN and IPv6,
NAT translation, etc.). After that, the information is communicated over a global
communication network (i.e. the Internet) until it reaches a cloud service. The

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 37

cloud service will process the sensed data, enrich it, combine it with other sources
of information and eventually convert it into retrievable knowledge that needs to
be stored or actions that need to be performed in the real world. In the latter case,
there will be a flow from right to left in figure 2.1, until the action reaches an
embedded device such as an actuator.

Of course, many variants of the above generic IoT system exist and in many
IoT systems not all of the components shown in figure 2.1 need to be present or
involved. Therefore, in figure 2.2, we have mapped a number of realistic IoT use
cases to this generic system.

2.2.2 Open challenges

In this subsection we will illustrate through a number of concrete examples, i.e.
instantiations of the generic IoT system shown in figure 1, some of the existing
limitations of state-of-the-art IoT systems and pinpoint the root cause of these
limitations.

2.2.2.1 Act in time

Many IoT business models adopt a cloud-based approach as partially illustrated
in figure 2.2a. Sensor data is pushed to the cloud where it is being processed. If
needed, corrective actions are taken. All intelligence is centralized in the cloud,
which makes it convenient for the cloud service provider to maintain the system
and to roll out new functionalities. However, depending on the application, the
complete sensing and actuation cycle might have to be completed within a certain
time interval. For instance, turning on a light using a light switch requires a worst
case latency of 200ms or better, whereas other home automation applications may
live with higher latencies. Consequently, depending on the type of IoT applica-
tion, the processing functionality may reside either far away from the constrained
devices (in the cloud) or must reside nearby in order to meet certain performance
requirements. Future IoT systems should be able to cope with these requirements,
e.g. by supporting distributed processing that puts the intelligence wherever it is
most needed.

Even when the processing functionality resides close to the sensors and actu-
ators, e.g. on a gateway as shown in figure 2.2c, it may still be possible that the
underlying network is not capable of meeting the performance requirements im-
posed by the IoT application e.g. due to suboptimal routing, inefficient medium
access control or competition with other wireless traffic. To tackle this, it should
not only become possible to place the intelligence where it is needed, but also to
optimally configure the underlying network. Similar observations can be made for
cases where for instance synchronization is needed.

38 CHAPTER 2

Sensors + smart devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

Zigbee
network

3G

Gateway

a) Zigbee sensor generates an alarm upon which a user needs to be informed. The intelligence resides in
the cloud.

Internet

Cellular

Sensor devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

Border router

LLN
network

Processing

Storage

b) Sensors in a 6LoWPAN sensor network monitor their environment. All measurements are sent to the
cloud where they are stored.

Internet

Sensor devices Local
connectivity Intermediate processing Cloud processing Global

connectivity

c) Temperature sensors in a home automation network measure temperature. Based on the measurements,
the HVAC system is being triggered. All intelligence resides in the gateway.

Sensors + smart devices
(embedded processing)

Local
connectivity Intermediate processing Cloud processing Global

connectivity

LAN
Router

Internet

d) A tracking device with a SIM card communicates its position to a cloud service over a GPRS connection.
The information is stored in the cloud and can be consulted by customers.

Sensors + smart devices
(embedded processing)

Local
connectivity Intermediate processing Cloud processing Global

connectivity

LAN Internet

e) User 1 (residing in the same network) and user 2 (residing in a remote network) are interacting with a
sensor device.

Local user

Remote user

Gateway

Figure 2.2: Five IoT scenarios mapped to the generic IoT system from figure 2.1

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 39

2.2.2.2 Work offline

IoT applications that solely rely on intelligence in a cloud system will completely
break upon an interruption of the Internet connectivity (the “global connectivity”
in figures 2.1 and 2.2). For instance, one can create a building management sys-
tem that is fully managed and controlled by the cloud based on locally collected
sensor data. However, in case the cloud is unavailable, the building management
system should still be able to deliver a minimal service level. Consequently, the
core functionalities of an IoT application should reside in the local network. This
way, using simplified local processing, it is still possible to have an operational
application albeit with reduced functionality. If connectivity is available, more ad-
vanced functionalities, e.g. by using externally available data, can be offered to
the users. Again, distribution of intelligence and processing is needed to offer a
robust IoT system.

2.2.2.3 Serve many

IoT systems such as the one shown in figure 2.2e, may not only scale up to thou-
sands of sensors and actuators, but may also involve a multitude of users, each
user taking up a particular role in the overall system. For instance, in a building
management system one can have the building owner, facility managers, tenants,
cleaning staff, visitors, etc. Depending on their role and the corresponding poli-
cies, users should perceive a different system in terms of the data they can see, the
actions they can take, etc. However, many of the involved devices are not capable
of supporting this level of granularity in terms of visibility, access control, etc. due
to their constraints. Even if they would be able to offer some of this functionality
such as a security algorithm, it most likely would not scale with the number of
users due to resource depletion, i.e. every additional user will require storage of
additional state information. Therefore, it should become possible to outsource
this functionality to more powerful infrastructure, preferably without impacting
the constrained devices. Further, the outsourced functionality ought to be placed
at the most optimal location. Note that this depends on the actual location of the
user, e.g. a local versus a remote user.

2.2.2.4 Move and sleep

The IoT system shown in figure 2.2d involves tracking devices. These devices are
mobile as they move with the object they are tracking. In most cases, as these de-
vices are also battery powered, they are not permanently connected to the Internet.
This has two consequences. First of all, the IP address of the device will change
over time. Secondly, when users want to interact with the device, e.g. to perform
some reconfigurations, the device will mostly be offline. Both aspects complicate
the interaction with these devices for end users or external systems. Additional

40 CHAPTER 2

functionality has to be provided along the communication path in order to hide the
sleepy and mobile behavior of the devices, thereby offering a uniform view to the
outside world.

2.2.2.5 Monoglot

Most constrained devices do not posses the capabilities for supporting a wide range
of data formats or protocols. In many cases, they only speak a single protocol and
deliver their data in a particular format or content type. Further, the transferred data
is often kept as compact as possible in order to reduce the communication overhead
and to save energy. Lengthy, verbose descriptions are out of the question. When
an IoT application is implemented as a vertical silo, where devices and cloud are
designed to be interoperable, this may not be a problem. However, in more open
systems where a variety of devices and services may interact with each other or
where IoT devices can be connected to any service provider, this may easily lead
to interoperability problems.

Different parties will most likely support different data formats (e.g. JSON
versus XML, Fahrenheit versus Centigrade, etc.). When they need to interact, ad-
ditional intelligence is needed for translating between incompatible data formats,
else lack of interoperability will prevent their collaboration. Sometimes, the data
generated by constrained devices is not self-descriptive. Therefore, on its path to-
wards e.g. a cloud service, the data may be enriched with additional information
to make it completely self-describing. A last example relates to the semantic web.
Before semantic reasoning can take place, the sensor data needs to be tagged with
additional semantic information. Again, placing such semantic descriptions on
the constrained devices themselves might be too complex, so this functionality is
better outsourced to more powerful devices. These examples illustrate that by dy-
namically placing intelligence in network or processing elements, interoperability
can be greatly increased.

2.2.3 Distributed intelligence

From the previous examples it becomes clear that in order to optimally support a
wide variety of IoT applications and user needs, additional intelligence is needed.
This intelligence is not only related to the processing of data, but is also related to
security, Quality of Service, network configuration, etc. Further, there is no single
place where this intelligence has to be placed or activated. Depending on the sit-
uation, it may be spread from the devices themselves up to the cloud, covering all
components in the chain shown in figure 2.1. In many cases, the intelligence needs
to be distributed over different locations in order to deliver the desired functionality
or performance. Further, it involves both processing and networking elements.

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 41

This is what we define as distributed intelligence. It is the cooperation between
devices, intermediate communication infrastructures (local networks, access net-
works, global networks) and/or cloud systems in order to optimally support IoT
communication and IoT applications. Starting from the application requirements,
user needs and policies, intelligence is optimally distributed and activated in or-
der to operate functions such as processing, security, QoS and to configure the
communication infrastructure. Through distributed intelligence, the right commu-
nication and processing functionality will be available at the right place and at the
right time as is illustrated in figure 2.3.

Sensors + smart devices
(embedded processing)

Local
connectivity

Intermediate processing
(e.g. gateway) Cloud processing Global

connectivity

IoT application(s)

User needs/policies

Figure 2.3: The concept of distributed intelligence

Distributed intelligence will enable us to tackle the aforementioned shortcom-
ings of existing IoT systems. It can contribute to increased interoperability, better
usage of scarce resources, better application performance, improved user experi-
ence, more secure systems, etc. As can be seen from the previous discussion its
realization is not straightforward and imposes significant challenges, mainly due
to the fact that it is distributed in nature, involves both processing and communi-
cation and, communication-wise, pertains to multiple layers in the communication
stack.

In the remainder of the paper, we will propose some concrete enablers to sup-
port the concept of distributed intelligence and will illustrate how they can work in
the context of open IETF-based IoT protocol stacks. Hereby, we focus on the fact
that typical IoT devices are constrained in nature and not capable of offering all
functionality needed. Therefore, solutions are needed to outsource such function-
alities to more powerful components, i.e. to virtualize this functionality as will be
explained in the following section. Other interesting aspects of distributed intel-
ligence, such as enabling an optimal configuration of the underlying network are
outside the scope of this work.

42 CHAPTER 2

2.3 Sensor Function Virtualization for the Internet
of Things

The previous section illustrated why distributed processing is needed in the In-
ternet of Things and gave a high-level overview of distributed intelligence. This
section looks at how distributed processing can be realized while keeping in mind
the challenges specific to the IoT domain. To this end, we propose an approach that
enables distributed processing by offloading certain functionality from constrained
devices to unconstrained infrastructure such as a (virtualized) gateway, the cloud
and other (in-network) infrastructure. Hence the term “Sensor Function Virtual-
ization” (SFV), where a sensor is defined more broadly to also include actuators
and other types of constrained devices.

As the Internet of Things is expected to include up to 50 billion devices by
2020, any proposed solution for such sensor function virtualization should be able
to scale as the number of devices increases. Here, two important points are to
be noted. By running (parts of the) sensor function virtualization on cloud in-
frastructure, we expect our solution to profit from the elasticity provided by these
environments: i.e. as the number of devices increases, more resources are automat-
ically allocated by the cloud infrastructure to handle the increased load. Elasticity
is a huge benefit for scalability that results from pooling resources in large data
centers. Apart from elasticity, sensor function virtualization solutions should also
follow a tiered design. Here, multiple tiers work together by each taking care of
a part of the sensor function virtualization. Next to a more scalable approach, a
tiered design also allows to mitigate some of the issues present in sensor function
virtualization that relies solely on cloud-based infrastructure (e.g. high latency and
non-functioning devices when Internet is unavailable).

Another important aspect for sensor function virtualization is the heterogene-
ity of both constrained devices and infrastructure. Constrained devices might be
battery powered, might be part of a fixed communication infrastructure, might
be mobile, have a large diversity in processing power and so on. Also, different
forms of infrastructure that can aid in sensor function virtualization are expected to
exist. In some deployments (e.g. typical WSN scenarios) there might be a mains-
powered gateway that can assist in sensor function virtualization. In other settings,
such gateways are not common but the access network itself might assist in sensor
function virtualization (e.g. mobile devices that rely on GPRS communication).
Finally, some environments might not provide any opportunities for tiering at all
and here one is limited to external infrastructure (such as the cloud). Solutions
for SFV have to be flexible in order to deal with these forms of heterogeneity
and should try to shield users as much as possible from the heterogeneity of the
underlying devices and infrastructure.

A final important aspect is that the actual sensor function virtualization should

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 43

Application layer

APP

Matching

1:
2:
...

Transport layer

Network layer

TRA

NET

IN OUT

Figure 2.4: Architecture for sensor function virtualization in the Internet of Things

be transparent to end users. This means that any virtual functions that are added to
devices should build on top of existing communication interfaces and that changes
to protocols running on end hosts should be minimal and preferably non-existent.
When SFV enhances physical devices, it should appear as if the constrained de-
vice offers the virtualized functions by itself from the user’s point of view. When
working with entirely virtualized devices, the interface to the user should be the
same as the one that is used to communicate with constrained devices. If not, it
will be cumbersome for users to discover and use the additional functionality.

Keeping in mind the requirements of the previous paragraphs, our proposed
architecture is presented in figure 2.4. The basic principle is that sensor function
virtualization is realized by decomposing the desired functionality into smaller
modules. In the figure the modules are categorized according to the functionality
that they provide (e.g. a module implementing 6LoWPAN compression would fall
in the network category). The main benefit of this modular approach is that mod-
ules can be added at runtime (much like a plugin-based system) and that it allows
to deploy modules over multiple machines thus improving scalability. The input
and output data types for all types of modules are network packets. When network
traffic arrives at a machine that provides sensor function virtualization, network
packets flow up the architecture through a set of modules and down again through
(possibly another set of modules) towards an outgoing network interface. The
matching component takes care of passing network packets through the correct
chain of modules based on configuration information that it stores. When combin-
ing all of these small modular functional blocks that are running on a number of
machines, the distributed processing and in turn sensor function virtualization for
the IoT are realized.

Depending on the functionality that is to be virtualized, one or more locations
in the network are suitable for deploying the functionality. For example, if local

44 CHAPTER 2

Internet

Gateway

Cloud

Access
network

User

Constrained devices

Figure 2.5: Infrastructure at different locations throughout the Internet works together to
provide sensor function virtualization in the Internet of Things

operation (i.e. within the same network) is required in case of Internet failure, vir-
tualizing functionality on cloud infrastructure probably is unfeasible. In this case
the local gateway will play an important role in sensor function virtualization. If on
the other hand, global operation is required at all times then always-online systems
(such as the cloud, but potentially also the gateway if it is available) can bridge
situations where a constrained device is unavailable for communication (e.g. it
might be sleeping to conserve energy, or its GPRS connection might be unavail-
able). Packaging SFV in modular components that can be (re)deployed at runtime,
ensure that our architecture is able to handle this kind of flexibility.

Figure 2.5 gives an overview of the different locations where sensor function
virtualization can be realized. The colored disks at the bottom represent con-
strained devices. Note that mobile device might migrate to a different access
network in case of inter-network mobility (only one access network is shown in
the figure). The figure also displays potential users on the right hand side (note
that a constrained device is also considered as a user). As the Internet - and by
extension most standardization efforts by IETF (see section 2.4) - follows a host-
centric approach our SFV architecture is designed to be compatible with this point
of view. While SFV in effect moves functionality away from Internet hosts to
supporting infrastructure, our approach allows extending constrained devices in a
way that is transparent to its users. Transparency here means that it appears as if

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 45

Internet

a) Gateway +
interception
component

Cloud

Access
network

Users

c) Virtual devices case

cccc::/64

b) Gateway +
tunnel endpoint

1

2

3

4

bbbb::/64

5

6

Virtual device subnet

7

8

9

Figure 2.6: Three different integration strategies for cloud-based SFV

the functionality resides on the device itself, while in fact it is offered by support-
ing infrastructure. This is an important point, as this transparency differentiates
our work from most of the cloud-based systems available today that each offer
their own integration interface. This transparency means that users do not have
to integrate with yet another cloud-based API as SFV functionality appears to be
offered by the device itself. One consequence is that in order for a component of
our architecture to enhance a constrained device with new functionality it must be
able to receive and process requests for this device. For gateways that are on the
routing path between a device and its Internet client this is trivial. For cloud-based
infrastructure, extra measures are most likely necessary in all cases.

Figure 2.6 gives an overview of the mechanisms that ensure that cloud-based
SFV infrastructure - or more generally any infrastructure that is not on the rout-
ing path between the user and the constrained device - is able to process requests
destined and responses coming from the constrained devices that it handles. This
is necessary if the cloud infrastructure should be able to modify requests and re-
sponses in order to fulfill its function in a transparent way (e.g. remove unneces-
sary data, add semantic descriptions, translate between data formats, etc.).

In case a (black arrows), an interception component deployed along the rout-
ing path is responsible for forwarding (matching) incoming network traffic for the
constrained device (1) towards the cloud infrastructure (2). Once the request ar-
rives in the cloud it can be processed, and a response can be generated immediately
or a (modified) request can be sent towards the constrained device (3). In the latter

46 CHAPTER 2

case, the interception component is also responsible for ensuring that responses
pass via the cloud. Once the cloud has processed the response (e.g. to update a
cache), it forwards the response to the user (4). Note that response processing by
the cloud is optional in certain cases (e.g. in the case of a cache that is only running
on the gateway). Depending on the use case, the interception component can be
configured by the cloud to stop forwarding traffic of a particular stream after the
cloud has processed a number of packets of said stream (e.g. in access control the
denial/granting of access is configured into the gateway by the cloud). This avoids
unnecessary forwarding of traffic to the cloud. In this case the gateway can also
forward responses directly to the user.

In case b (blue arrows), the constrained devices receive an IPv6 address that
is globally routable and that is routed via the cloud infrastructure. As a result
the cloud is able to process networking traffic destined to constrained devices (5).
When the cloud forwards the traffic to the constrained device, then this traffic
has to be encapsulated on the public Internet (otherwise it would never reach its
destination). The tunnel endpoint can be a gateway (if one is available) or could
be the constrained device itself (depending on its processing capabilities). The
former is more suitable for WSN-like networks, while the latter is applicable to
mobile nodes that are capable of hosting a tunnel endpoint. Note that the tunnel
endpoint should also send all returning traffic through the tunnel in this case (6).
If not, the cloud infrastructure is unable to process the responses from constrained
devices (making e.g. caching impossible).

In case c (red arrows), the cloud-based SFV infrastructure mirrors every con-
strained device via a virtual device that is allocated a globally-routable IPv6 ad-
dress from a “Virtual device subnet” that is routed to the cloud. In this case users
interact with the virtual device in the cloud (7). Here the cloud fulfills the role of
a traditional reverse proxy. This mode of operation is still transparent in the sense
that the virtual device offers the same interfaces as the actual constrained devices
but in this case the user does have to communicate with an Internet host at a differ-
ent IPv6 address. The cloud infrastructure processes requests from users destined
to virtual devices and forwards these to the actual constrained devices (8). The
responses arrive from the constrained device and are sent back to user (9). This
case is actually a generalization of case b. Note that this mechanism can also be
used as a light-weight alternative to mobile IPv6 for constrained devices where
their anchor point on the Internet changes due to their mobility. In this case, users
always communicate with the fixed “virtual device” and the cloud takes care of
mapping requests to the volatile IP endpoint of the constrained device. Signaling
of the volatile IP address can happen via existing interfaces.

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 47

2.4 IETF protocol stack for the Internet of Things

As the remainder of this paper will employ CoAP and the IETF IoT stack for
illustrating SFV, a concise overview of all protocols involved is presented here.
Ishaq et. al present a more elaborate overview of the subject in [3].

The IETF started standardization for the IoT with an adaptation protocol for
IPv6 over 802.15.4 communication links. The resulting protocol is defined by
RFCs 4944 [4] and 6282 [5] and is more generally known as 6LoWPAN (IPv6
over Low power Wireless Personal Area Networks). 6LoWPAN allows compress-
ing IPv6 and UDP packets by eliding redundant information in IPv6 and UDP
headers. 6LoWPAN also provides fragmentation support for large IPv6 packets,
thus fulfilling the minimum MTU requirement of 1280 bytes found in IPv6. As a
result, deploying IPv6 (with its 40 bytes header) on links with small MTUs (such
as 802.15.4 links with a 127B MTU) in a standard compliant matter has been pos-
sible since 2007. It is interesting to note that the idea of compression for IPv6 in
6LoWPAN is also being applied to other protocols (such as DTLS [6]).

Around 2008 consensus emerged in the IETF on standardizing a routing proto-
col for use in low power and lossy networks (LLNs). Due to the unique properties
of LLNs (e.g. conserve energy as much as possible, point to multipoint traffic,
etc.), their routing requirements differ from what traditional routing protocols con-
sidered at that time. The results of the ROLL working group include a number of
requirements for specific types of LLNs (home automation, industrial, smart city,
etc.) and a routing protocol known as the “IPv6 Routing Protocol for Low-Power
and Lossy Networks” (RPL). RPL, standardized in RFC 6550 [7], allows con-
structing routing trees (known as DODAGs) for LLNs according to an objective
function that can be tuned to meet the requirements specific to the type of LLN.

Network (IPv6+RPL)

Transport (UDP + DTLS)

Application (CoAP)

Adaptation (6LoWPAN)

MAC

PHY

Figure 2.7: IETF protocol stack for low power and lossy networks in the Internet of Things

In June 2014 the IETF Constrained RESTful Enviroments (core) working group
standardized an application layer protocol for use in low power and lossy networks.
The Constrained Application Protocol (CoAP), as defined in RFC 7252 [8], allows
building applications based on the concepts of RESTful web services that are well-

48 CHAPTER 2

known from the WWW. CoAP can be thought of as a lightweight alternative to
HTTP and as the counterpart of HTTP for use in the embedded world (with battery
operated devices, unreliable wireless links and low-cost 16 bit microcontrollers).
Another important contribution of the working group is RFC 6690 [9] which speci-
fies a format for web linking for constrained web servers. This format can describe
hosted resources, provide attributes for resources and define relationships between
links. It is designed with a simple parser in mind that is memory efficient and that
provides compact web links. Figure 2.8 shows a typical request/response message
exchange between a CoAP client and server. First the client discovers which re-
sources are hosted by the server via the “.well-known/core” resource, the response
contains a list of links according to the core link format. The second request re-
trieves a plain-text representation of the temperature resource from the server.

CoAP Client CoAP Server

GET .well-known/core

2.05 "Content"
</s/t>;rt="TemperatureC";if="sensor",

</s/l>;rt="LightLux";if="sensor"

GET /s/t

2.05 "Content"
23.5C

Figure 2.8: A CoAP request/response message exchange showing resource discovery and
data retrieval

The CoRE working group identified that security is an important requirement
for almost all IoT applications. Therefore it chose to rely on transport-layer secu-
rity as this is a popular choice in the WWW today. More specifically, RFC 7252
defines a binding for CoAP that specifies how CoAP should be used in conjunction
with DTLS. Datagram Transport Layer Security (DTLS, RFC 6347 [10]) provides
end-to-end security via TLS over UDP (as opposed to TCP in case of TLS). When
employing pre-shared key (PSK) cipher suites, DTLS can rely solely on symmet-
ric encryption for providing end-to-end security. When combined with the small
memory footprint of DTLS, this makes DTLS an attractive candidate for use in
LLNs.

Finally, the IETF has identified the need for standardizing a set of DTLS pa-
rameters for use in LLNs. To this end, the DTLS In Constrained Environments
(DICE) working group was formed in 2013. DICE is looking to standardize a
LLN profile for DTLS, to overcome some of the issues of DTLS in combination

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 49

with multicast and to investigate practical issues surrounding the DTLS handshake
in LLNs. DICE explicitly states that it will not alter the DTLS state machine.

Note that for GPRS equipped constrained devices, the 6LoWPAN and RPL
standards are less applicable. These types of device do however still benefit from
the low communication overhead offered by DTLS/CoAP when compared to TL-
S/HTTP [11]. An overview of the entire stack is shown in figure 2.7.

2.5 SFV in the unconstrained domain

As mentioned function virtualization enables us to extend constrained devices with
new functions without burdening the constrained device itself. This is achieved by
offloading (or virtualizing) functionality to more powerful infrastructure (such as
gateways, routers, cloud-based infrastructure) in a way that is transparent to the
constrained device and its users. This section presents two scenarios that demon-
strate SFV according to the architecture presented in section 2.3. Note that these
two scenarios serve as illustrations of SFV and that SFV as a technique is not lim-
ited to what is shown here (for example SFV at the network layer is not shown
here). The scenarios are applied to the IETF IoT stack that was detailed in the
previous section.

The first case considers constrained devices that are only intermittently reach-
able via the Internet. These devices usually sleep for prolonged periods of time in
order to keep energy consumption to a minimum. Every once in a while (e.g. after
a certain period of time has passed or after an event is triggered) the device wakes
up, sends its sensor data to a so-called mirror server, checks whether there is any
incoming (configuration) data and goes back to sleep. Users do not interact with
the sleepy device, instead they communicate with a mirror server that is always
online. In CoAP this kind of functionality is known as a CoRE Mirror Server [12].
One problem with this approach is that mirror servers host mirrored resources on
behalf of a multitude of sleepy devices. As a result, the user is exposed to the mir-
rored resources belonging to all sleepy devices that are interacting with the mirror
server. This is problematic when the user in question is unfamiliar with and does
not support the mirror server client operation interface. As a solution, SFV hides
this client operation interface and instead provides a dedicated CoAP server for
every device that is mirrored on the mirror server. This dedicated CoAP endpoint
is always online and hides the underlying mirror server’s interfaces from CoAP
clients.

Apart from hiding the mirror server’s client operation interface to clients, this
scenario also illustrates how SFV can extend a device by hosting new CoAP re-
sources on behalf of the device. In this case, SFV emulates CoAP resources via
the dedicated CoAP endpoint that provides semantic descriptions of the resources
offered by the constrained device. Because these descriptions are too large to store

50 CHAPTER 2

Internet

Cloud

Access
network

User

aaaa::/64 Mirrored devices subnet

aaaa::/64
MSEMU

coap://[aaaa::1]/s/t text/n3 <RDFN3>

coap://[aaaa::1]/ -> coap://[::1]/ms/0

1

1

GET coap://[aaaa::1]/s/t

Figure 2.9: Two SFV modules providing emulated resources (EMU) and a mirror server
abstraction (MS)

on the device itself, it is more efficient to offer them by means of SFV.
In order to realize this scenario in accordance with the architecture presented

in figure 2.4, two SFV modules are needed. The MS module provides the dedi-
cated CoAP endpoint that hides the mirror server’s interface. The EMU module
implements the CoAP resource emulation. The matching component also has to
be configured in order to match requests for CoAP resources on the dedicated end-
point to the two modules. The result is shown in figure 2.9. The constrained device
(near the bottom in the figure) wakes up periodically to push its sensor data to the
mirror server in the cloud as per [12]. Users send their CoAP requests to the mir-
rored devices, which reside in a subnet that is routed towards the cloud (aaaa::/64
in the figure). Requests are handled by the SFV matching component in the cloud
(the white box in the figure). The matching component passes the requests to the
EMU module. If this module does not generate a response, then the request is
passed along to the MS module. In the figure, the EMU module is configured to
emulate one resource at coap://[aaaa::1]/s/t for the content-type “text/n3”. This
emulated resource provides a semantic description of a temperature sensor in the
RDF Notation3 format. The response of the resource (<RDFN3>) is shown in the
listing below.

<coap://[aaaa::1]/s/t>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://purl.oclc.org/NET/ssnx/ssn#Sensor>;
<http://spitfire-project.eu/ontology/ns/obs>
<http://vmuss07.deri.ie:8182/ld4s/res/property/temperature>;

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 51

<http://spitfire-project.eu/ontology/ns/uom>
<http://vmuss07.deri.ie:8182/ld4s/res/uom/centigrade>;
<http://purl.oclc.org/NET/ssnx/ssn#onPlatform> <coap://[aaaa::1]>;
<http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#hasLocation> ”Testbed iMinds”;
<http://purl.oclc.org/NET/ssnx/ssn#featureOfInterest> ”iMinds Office” .

Listing 1: RDFN3 description for a temperature CoAP resource
If the EMU module does not generate a response, then the request is handled

by the MS module. The MS module simply rewrites CoAP requests for mirrored
devices to requests for the mirror server. To accomplish this, it stores a mapping
between the two. For example, in the figure a request to coap://[aaaa::1]:/s/t will
be mapped to coap://[::1]/ms/0/s/t. The user is totally oblivious that its request
is rewritten by the module. Responses sent to the user by the MS module use
the destination address of the original request as the source address, e.g. for the
example responses come from aaaa::1.

The second case considers a Wireless Sensor and Actuator Network (WSAN)
that deploys the full IETF IoT stack from figure 2.7 and that relies on DTLS for
end-to-end security. In this network all constrained devices are accessible via their
publicly routable IPv6 address and users interact with the CoAP resources that are
hosted on the constrained devices. Optionally, devices employ radio duty cycling
to prolong battery life. In such a scenario, DTLS sessions with the sensors and
actuators are typically restricted to cipher suites that exclude any asymmetrical
encryption due to the high complexity and computational cost of the algorithms
involved. Furthermore, transporting and verifying certificates as is necessary in a
Public Key Infrastructure (PKI) is also deemed too expensive for sensors and actu-
ators. Instead, the constrained devices rely on symmetrical encryption algorithms
(AES being a common choice) and Pre-Shared Key (PSK) cipher suites (TLS
PSK WITH AES 128 CCM 8 is a popular suite) due to the relatively simple al-
gorithms (AES co-processors are common) and small amount of keying material
that has to be communicated respectively.

One issue in this scenario is that PSK cipher suites do not scale well as the
number of clients increases. A sensor and or actuator (sensa) has to share a unique
pre-shared key with every client. Obviously, this does not scale. A second issue
arises due to the end-to-end encryption (E2EE) itself. As one would expect in
E2EE, intermediary systems are unaware of the contents of the requests/responses
between a client and the sensa. However, in WSANs processing at the edge of the
network by a trusted intermediary can significantly improve response times and
battery lifetimes. This consideration applies to techniques such as caching and
access control. Ideally, we would want a variant of E2E security where the WSAN
gateway (which is considered to be trusted by both the client and the sensa) is able
to decipher communications in order to provide caching, access control, etc. To
summarize, the low scalability of PSK cipher suites and the inability to perform
any processing at the edge of the network (e.g. caching) are two problems inherent
to DTLS in WSANs today.

SFV can provide a solution to these two problems by virtualizing asymmetri-
cal encryption and by extending the WSAN gateway up to the application layer (in

52 CHAPTER 2

Internet
User

aaaa::/64

CAACL

DTLS

Trusted gateway

WSAN

GET coaps://[aaaa::1]/s/t

1

Figure 2.10: SFV at a trusted gateway provides DTLS termination, access control and
caching

effect realizing an application-level gateway). SFV on the trusted gateway inter-
cepts traffic and terminates DTLS sessions between clients and sensas. As a result,
the DTLS handshake of the client is performed with the trusted gateway. Note that
this happens completely transparent to the client, i.e. the client still communicates
with the public IPv6 address of the sensa (as the gateway is assumed to be trusted,
this is considered secure). The trusted gateway performs a DTLS handshake with
the sensa using a PSK cipher suite and all DTLS traffic of the client is sent over
this session. This way, the sensa only has to share a unique PSK with the gateway.
Furthermore, the gateway can offer a more extensive list of supported cipher suites
to the client. This list can include suites that rely on PKI, thereby circumventing
the scalability problem of the PSK suite offered by sensas. Finally, by terminating
DTLS sessions the trusted gateway is also able to perform edge processing such as
caching and access control.

Figure 2.10 presents an overview of this case. Preliminary results show that
terminating DTLS and re-using the same DTLS session in the WSAN for multiple
clients can reduce the energy consumption of the constrained device by more than
59% when compared to traditional end-to-end security where the trusted gateway
does not terminate the session. This large reduction in expended energy is primar-
ily due to the fact that the constrained device only has to setup one DTLS session
with the trusted gateway for all clients. As a result, the expensive DTLS handshake
is only executed once whereas in the traditional end-to-end case the handshake has
to be repeated for every separate client. Because the gateway is able to see the
contents of the CoAP requests, it can apply access control on a per resource basis.

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 53

For example, users that are authenticated with a specific certificate might be able
to reconfigure resources (i.e. PUT and POST methods are allowed for specific
resources), whereas others are only allowed to retrieve data (i.e. only the GET
method is allowed for specific resources). Furthermore, the DTLS termination
module can be configured to omit DTLS in the WSAN for certain requests that do
not require authentication and/or confidentiality in the WSAN. For the latter, con-
sider an example where retrieving a temperature value is done in plain-text in the
WSAN, but is transferred in cipher text over the public Internet. Note that these
kinds of advanced scenarios are very hard to realize without a distributed approach
due to constraints of the IoT devices. This is where SFV really shows its potential.

2.6 SFV in the constrained domain
In some cases, sensor function virtualization might be required on the constrained
devices themselves. For SFV on constrained devices the architecture from fig-
ure 2.6 is often not a good fit, as their characteristics differ greatly from what is
available on more powerful hardware such gateways and the cloud. Nevertheless,
in previous work we have shown that some form of flexible distributed comput-
ing can be provided for constrained devices. Other approaches that target repro-
grammability of constrained devices can also achieve the desired flexibility at a
higher cost due to the expensive operation of transferring a program’s memory
contents.

Bindings [13] allow a third party to setup direct CoAP-based interactions be-
tween sensors and actuators and other devices. One of the benefits is that the third
party does not have to be a message broker between the sensor and the actuator
and therefore can go offline after setting up the binding. Furthermore, this gives us
the flexibility to link sensors to actuators after they are deployed instead of when
they are produced.

Another concept that we have presented in previous work [14] are small REST
web services that fulfill common tasks such as filtering and (de)multiplexing of
sensor data. These web services can be deployed inside the constrained net-
work (on the gateway but also on constrained devices) and are called RESTlets.
RESTlets have one or more inputs and zero or more outputs. All in- and outputs
are RESTful web services. RESTlets allow decomposing parts of the data process-
ing into smaller blocks that can be deployed close to the data sources and their con-
sumers. Because requests and responses do not have to traverse the entire WSAN,
response times and energy consumption are lowered in multi-hop WSANs.

2.7 Related work
Thirty-five years after Cerf V. and Kirstein P. argued about the role of gateways in
what was then the early Internet, the authors revisit the same question at the advent
of the Internet of Things [15]. Very similar to the early Internet, there exist a num-

54 CHAPTER 2

ber of proprietary protocols for connecting things to the Internet today. The authors
argue that there will first be a period of adaptation for connecting legacy technolo-
gies to the IoT, followed by period of adoption where the IP will supersede these
legacy technologies. In terms of adaptation, the authors introduce repositories as
the end-point for interactions of clients with things. These repositories have direct
access to sensors to gather data or to set configuration information. Repositories
act as a bridge between clients and sensors and apply adaptations where necessary.
The authors also mention that repositories can be part of a distributed system. We
envision that these repositories are deployment options for our SFV concept. Our
work does not only focus on adapting proprietary technologies for Internet inte-
gration, SFV also enhances things that already deploy the IETF IP stack. This is
necessary in order to bridge the gap in processing power and capabilities between
constrained devices and traditional Internet devices.

Varakliotis et al. [16] build further on the vision presented by Cerf V. &
Kirstein P. The authors describe which tasks are common for a gateway and de-
compose these into smaller blocks that are situated at various layers in the protocol
stack. These functional blocks are very often required but need not be co-located
on one and the same machine, e.g. they could be distributed on multiple servers.
The result is a distributed protocol stack, with a minimal controller and external
servers that hold most of the functional blocks. The IETF stack is also consid-
ered as one of the potential technologies for IoT networks (i.e. the DevNet). Our
vision aligns closely to that of Varakliotis et al. However, the assumption that
a distributed approach will automatically lead to a stripped gateway with minimal
functionality and external servers doing the heavy-lifting does not hold in all cases.
Consider an example where things generate large amounts of data that cannot be
transported in their raw format to external infrastructure. In such a case, it can be
beneficial to do some form of processing locally at the gateway. In contrast to the
work of Varakliotis et al., our SFV architecture does not exclude this possibility.

Another interesting work to mention in this context is the IPv6 addressing
proxy by Jara et al. In [17] an adaptation proxy is presented for mapping native
addressing from legacy technologies to the IPv6 Internet of Things. The authors
provide extensive examples for legacy technologies such as X10, EIB, CAN and
RFID from the industrial, home automatic and logistics domains. Our SFV con-
cept is an ideal candidate for implementing such an addressing proxy.

In “Moving application logic from the firmware to the cloud” [18] Kovatsch
et al. argue that application development should be fully decoupled from the em-
bedded domain. Embedded devices are thin servers that export only elementary
functionality by means of REST resources. The approach relies on application
servers that house the logic of applications. Our SFV concept can be seen as a
distributed version of these application servers. SFV also allows to transparently
enhance embedded devices for all clients involved, thus the virtualized functional-
ity becomes available to all parties interacting with the device and not only to the
application server. As a result, our work should facilitate easier reuse of applica-
tion logic than the application servers presented by Kovatsch et al.

PyoT [19] is a programming framework for the IoT that claims to simplify IoT

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 55

application development by providing a number of common operations to devel-
opers. Supported operations include discovery, monitoring, storage and triggering
of devices and their data. The PyoT framework can reside on a gateway or in
the cloud. Furthermore, PyoT also integrates with T-Res [20], a framework en-
abling “in-network processing” in IoT-based WSNs. The existence of the PyoT
framework shows that extending constrained devices with common operations can
help to accommodate IoT application development. This is also one of the objec-
tives of SFV. T-Res is an alternative approach to SFV in the constrained domain,
as discussed in section 2.6, that relies on programmability via a minimal python
interpreter suitable for embedded systems (PyMite).

Finally, there are two other works that discuss the role of cloud computing in
the Internet of Things. In [21] Pereira et al. present a holistic network architecture
for supporting mobility in IoT applications. This service-oriented architecture can
be deployed on three levels: on the node itself (for resilience against lost Internet
connectivity), on a SOA-enabled gateway (when more processing than what a node
can provide is necessary) and on the Internet (where all limitations of processing
power are mitigated). In [22], Zhou et al. present a common architecture for in-
tegrating the Internet of Things with cloud computing that is named CloudThings.
The authors describe a cloud-based Internet of Things platform for developing, de-
ploying, running, and composing Things applications. CloudThings differs from
PyoT in that it focuses on providing a development platform (that supports IaaS,
PaaS but also SaaS) as opposed to a more rigid development framework. These
two works illustrate how distributed processing can extend constrained IoT de-
vices, which is one of the key concepts of SFV.

None of the identified related work considers reconfiguring the network to op-
timally support an IoT application’s requirements as an integral part of their ap-
proach. In our work this is an important aspect of distributed intelligence, as in
some cases (cfr. section 2.2.2.1) the network has to be able to adapt in order to
fulfill the requirements of the IoT application.

2.8 Conclusions
In this paper we presented some of the limitations that are present in today’s IoT
systems. We argued that some of these issues can be overcome by means of dis-
tributed intelligence. In distributed intelligence the network and its infrastructure
can be reconfigured to meet application requirements and the resources offered
by these systems can be leveraged to provide processing and communication at
the right place and time according to the requirements of IoT applications. Sen-
sor function virtualization is a technique that enables distributed intelligence via
modular functional blocks that can be deployed anywhere in the network infras-
tructure. This way processing can be placed where it is most needed. Furthermore,
SFV can also be used to expose configuration interfaces for existing network func-
tionality (thus enabling the reconfiguration required in distributed intelligence).
By means of two extensive examples, we have illustrated some of the benefits that

56 CHAPTER 2

SFV can bring to the table of IoT application development and distributed IoT
systems.

In the future, we plan to evaluate our approach more thoroughly. The reduc-
tion in energy consumption and latency in the DTLS termination use case already
show that sensor function virtualization can have a significant impact on impor-
tant performance metrics for constrained devices and IoT applications. However,
more experiments are necessary. Furthermore, reconfiguring the communication
network (e.g. routing, MAC protocols, etc.) in order to support specific commu-
nication patterns required by an IoT application was only briefly discussed. More
work is needed to explore what is possible and how well this aligns with the vision
of distributed intelligence that was outlined in this paper.

Acknowledgement
The authors would like to acknowledge that part of this research was supported
by the COMACOD project. The iMinds COMACOD project is co-funded by
iMinds (Interdisciplinary institute for Technology) a research institute founded by
the Flemish Government. Partners involved in the project are Multicap, oneAc-
cess, Track4C, Invenso and Trimble, with project support of IWT.

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 57

References
[1] D. Evans. The internet of things: how the next evolution of the internet is

changing everything, 2011. Available from: https://www.cisco.com/c/dam/
en{ }us/about/ac79/docs/innov/IoT{ }IBSG{ }0411FINAL.pdf.

[2] Light-Weight Implementation Guidance (lwig) - Charter, 2011. Available
from: https://datatracker.ietf.org/wg/lwig/charter/.

[3] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. De
Poorter, I. Moerman, and P. Demeester. IETF standardization in the field
of the Internet of Things (IoT): a survey. Journal of Sensor and Actuator
Networks, 2(2):235–287, 2013.

[4] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. RFC 4944: Transmis-
sion of IPv6 packets over IEEE 802.15. 4 networks, 2007. Available from:
https://tools.ietf.org/html/rfc4944.

[5] J. Hui and P. Thubert. RFC 6282: Compression format for IPv6 datagrams
over IEEE 802.15. 4-based networks, 2011. Available from: https://tools.
ietf.org/html/rfc6282.txt.

[6] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. Lithe:
Lightweight secure CoAP for the internet of things. IEEE Sensors Journal,
13:3711–3720, 2013. doi:10.1109/JSEN.2013.2277656.

[7] T. Winter and P. Thubert. RFC 6550: RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, 2012. Available from: https://tools.ietf.org/html/
rfc6550.

[8] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. RFC 7252: Constrained
Application Protocol (CoAP), 2014. Available from: https://tools.ietf.org/
html/rfc7252.

[9] Z. Shelby. RFC 6690: Constrained RESTful Environments (CoRE) Link For-
mat, 2012. Available from: https://tools.ietf.org/html/rfc6690.

[10] E. Rescorla and N. Modadugu. RFC 6347: Datagram transport layer secu-
rity version 1.2, 2012. Available from: https://tools.ietf.org/html/rfc6347.

[11] L. Daniel, M. Kojo, and M. Latvala. Experimental Evaluation of the CoAP,
HTTP and SPDY Transport Services for Internet of Things. In 7th Inter-
national Conference on Internet and Distributed Computing Systems, pages
111–123, 2014.

[12] M. Vial. CoRE Mirror Server, 2013. Available from: https://tools.ietf.org/
html/draft-vial-core-mirror-server-01.

https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
https://datatracker.ietf.org/wg/lwig/charter/
https://tools.ietf.org/html/rfc4944
https://tools.ietf.org/html/rfc6282.txt
https://tools.ietf.org/html/rfc6282.txt
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/draft-vial-core-mirror-server-01
https://tools.ietf.org/html/draft-vial-core-mirror-server-01

58 CHAPTER 2

[13] G. K. Teklemariam, J. Hoebeke, I. Moerman, and P. Demeester. Flexible, di-
rect interactions between CoAP-enabled IoT devices. In The Eighth Interna-
tional Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS-2014), 2014.

[14] G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, I. Moerman, and P. De-
meester. Simple RESTful Sensor Application Development Model Using
CoAP. In 9th IEEE Workshop on Practical Issues in Building Sensor Net-
work Applications (IEEE SenseApp 2014), pages 552–556, 2014.

[15] V. Cerf and P. Kirstein. Gateways for the Internet of Things-An Old Prob-
lem Revisited. In Global Communications Conference (IEEE GLOBE-
COM), pages 2641–2647, 2013. Available from: http://discovery.ucl.ac.uk/
1414930/.

[16] S. Varakliotis, P. T. Kirstein, A. Jara, and A. Skarmeta. A process-based
Internet of Things. In 2014 IEEE World Forum on Internet of Things
(WF-IoT), pages 73–78. Ieee, mar 2014. Available from: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6803123, doi:10.1109/WF-
IoT.2014.6803123.

[17] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein.
IPv6 addressing proxy: mapping native addressing from legacy technolo-
gies and devices to the Internet of Things (IPv6). Sensors (Basel, Switzer-
land), 13(5):6687–712, jan 2013. Available from: http://www.mdpi.com/
1424-8220/13/5/6687/htm, doi:10.3390/s130506687.

[18] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving application logic from the
firmware to the cloud: Towards the thin server architecture for the internet of
things. . . . Mobile and Internet . . . , 2012. Available from: http://ieeexplore.
ieee.org/xpls/abs{ }all.jsp?arnumber=6296948.

[19] A. Azzara, D. Alessandrelli, S. Bocchino, M. Petracca, and P. Pagano.
PyoT, a macroprogramming framework for the Internet of Things. In
Proceedings of the 9th IEEE International Symposium on Industrial Em-
bedded Systems (SIES 2014), pages 96–103. Ieee, jun 2014. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6871193, doi:10.1109/SIES.2014.6871193.

[20] D. Alessandrelli, M. Petraccay, and P. Pagano. T-Res: Enabling Reconfig-
urable In-network Processing in IoT-based WSNs. In 2013 IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems, pages 337–
344. IEEE, may 2013. Available from: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6569453, doi:10.1109/DCOSS.2013.75.

[21] P. P. Pereira, J. Eliasson, R. Kyusakov, J. Delsing, A. Raayatinezhad,
and M. Johansson. Enabling Cloud Connectivity for Mobile Internet of
Things Applications. 2013 IEEE Seventh International Symposium on

http://discovery.ucl.ac.uk/1414930/
http://discovery.ucl.ac.uk/1414930/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6803123
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6803123
http://www.mdpi.com/1424-8220/13/5/6687/htm
http://www.mdpi.com/1424-8220/13/5/6687/htm
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6296948
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6296948
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6871193
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6871193
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6569453
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6569453

DISTRIBUTED INTELLIGENCE & SENSOR FUNCTION VIRTUALIZATION 59

Service-Oriented System Engineering, pages 518–526, mar 2013. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6525570, doi:10.1109/SOSE.2013.33.

[22] J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, and H. Jin.
CloudThings: A common architecture for integrating the Internet of Things
with Cloud Computing. In Proceedings of the 2013 IEEE 17th International
Conference on Computer Supported Cooperative Work in Design, CSCWD
2013, pages 651–657, 2013. doi:10.1109/CSCWD.2013.6581037.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6525570
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6525570

3
Secure Service Proxy: A CoAP(s)

Intermediary for a Securer and Smarter
Web of Things

The motivation for this chapter stems from the issues we encountered when devel-
oping application in a secure, constrained and open Web of Things (WoT). Specif-
ically, issues related to end-to-end security and missing features in Constrained
RESTful Environments (CoRE) led to this work applying Sensor Function Virtual-
ization (SFV), introduced in the previous chapter, to try and solve these problems.
To this end, the design of a secure, reverse proxy that extends virtual devices with
modular functionality is presented in this chapter. We demonstrate how, by com-
bining device virtualization and reverse proxying, the proposed proxy is able to
address the aforementioned issues.

? ? ?

Floris Van den Abeele, Ingrid Moerman, Piet Demeester and
Jeroen Hoebeke

Published in MDPI Sensors, Volume 17, Issue 7, 2017.

Abstract As the IoT continues to grow over the coming years, resource-constrained
devices and networks will see an increase in traffic as everything is connected
in an open Web of Things. Performance- and function-enhancing features are

62 CHAPTER 3

difficult to provide in resource-constrained environments, but will gain impor-
tance if the WoT is to be scaled up successfully. For example, scalable open
standards-based authentication and authorization will be important to manage ac-
cess to the limited resources of constrained devices and networks. Additionally,
features such as caching and virtualization may help further reduce the load on
these constrained systems. This work presents the Secure Service Proxy (SSP): a
constrained-network edge proxy with the goal of improving the performance and
functionality of constrained RESTful environments. Our evaluations show that the
proposed design reaches its goal by reducing the load on constrained devices while
implementing a wide range of features as different adapters. Specifically, the re-
sults show that the SSP leads to significant savings in processing, network traffic,
network delay and packet loss rates for constrained devices. As a result, the SSP
helps to guarantee the proper operation of constrained networks as these networks
form an ever-expanding Web of Things.

3.1 Introduction
In recent years, the Internet of Things (IoT) has increasingly become a hot topic in
industry, academia, the do-it-yourself community and also consumers. Businesses
are attracted by the new product opportunities and new sources of revenue that the
IoT promises to bring. For example, a 2013 market report on IoT by Cisco Inc.
(USA, CA, San Jose) predicts 14.4 trillion USD in created value for the “Internet
of Everything” from 2013 to 2022 [1]. Academia is interested in the many new
problems and issues that arise when deploying billions of devices on the Internet.
These issues include big data analytics, energy efficient communications, large-
scale deployments, management of devices, communication protocols, security
models, data privacy and many more. An introduction to the research aspect of
the IoT is presented in [2]. Finally, consumers are drawn to the IoT because IoT
products promise to bring improvements and novel services to their daily lives.
Examples of IoT domains include smart home, smart health, smart transportation,
smart factory, smart grid and many more [3].

As the Internet of Things continues to grow in scope and in size, the num-
ber of available technologies and platforms that promise to enable the IoT keeps
increasing. As a family of such technologies, a complete protocol stack was stan-
dardized at the Internet Engineering Task Force (IETF) for use with constrained
IoT devices in Low-power and Lossy Networks (LLNs) [4]. This suite of proto-
cols defines the communication stack from the network layer up to the application
layer. In contrast to the popular alternative ZigBee [5], the IETF protocol stack
gives the developer more flexibility to model the network and the application to
a specific use-case. For instance, with the IPv6 Routing Protocol for Low-power
and Lossy Networks (RPL) [6] the routing can be tuned by employing different
objective functions that optimize routes according to the metrics that are relevant
to the use case (e.g., minimize hop count, maximize battery lifetime, etc.). An-
other example of flexibility is found at the application layer, where the REST ar-

SECURE SERVICE PROXY 63

chitecture followed by the CoAP protocol allows developers to design their own
RESTful resources and to model their behavior. In terms of security, the IETF
elected to standardize an End-to-End (E2E) architecture as it is a popular choice
on the unconstrained Web today. Therefore, the CoAP standard defines DTLS (i.e.,
Datagram TLS) as its recommended security method.

Secure Sockets Layer (SSL) and, later, Transport Layer Security (TLS) have
been around since the end of the past century and have become very popular pro-
tocols for their roles in securing the WWW. Today, (D)TLS has become a flexible
protocol where endpoints can negotiate the type of security and where a built-
in extension mechanism allows one to add new features to the protocol without
touching the base specification. A comprehensive overview of the (D)TLS pro-
tocol is presented in the Background Section 3.2. Widespread adoption, a wide
range of implementations, an open protocol specification and a high level of inter-
operability are just a few of the benefits of the TLS protocol. Nevertheless, one
should be careful when deploying end-to-end security with DTLS in constrained
environments. This issue has been recognized by the IETF, which has formulated
guidance for implementing and deploying DTLS in constrained environments in
RFC 7925 [7].

Despite the advantages offered by DTLS, E2E security has a number of dis-
advantages when deployed as-is in LLNs. One issue with E2E security is that it
completely blocks out any third party (e.g., intermediate middleboxes) from tak-
ing part in the communication. In most traditional Internet deployments, this is
a wanted property of E2E security, but in LLNs, it stops intermediary systems
from providing services that can improve resource usage and the performance of
constrained devices and networks. For example, caching of CoAP responses is
not possible when E2E security is applied between the CoAP client and the con-
strained CoAP server. A second disadvantage of E2E security is that application-
layer enhancements cannot be applied by middleboxes, as all communication is
enciphered. Thus, access control, admittance control and other similar features
cannot be provided at the edge of the LLN. Another known problem with DTLS
is its performance in duty-cycled networks, which is common in multi-hop LLNs.
Research [8] has shown that the latency introduced by the DTLS handshake can
become excessively large in multi-hop duty-cycled networks (up to 50 s for four
hops). Vuc̆inć et al. also show that constrained nodes can only store a limited num-
ber of DTLS sessions in their memory (e.g., max. three DTLS sessions for a WiS-
Mote node). As a result, nodes have to start dropping active DTLS sessions from
memory, which can deteriorate battery lifetime and DTLS performance. Finally,
end-to-end network addressing reduces the effectiveness of 6LoWPAN compres-
sion. This is due to the fact that the IPv6 prefixes for nodes situated on the Internet
and the used UDP ports are difficult or impossible to compress on 6LoWPAN. All
of these issues are covered in greater depth in the problem statement, cf. Sec-
tion 3.3.

The goal of this work is to overcome the issues identified with E2E security
without losing the benefits offered by such a widely-used protocol as DTLS. To
this end, we propose the “Secure Service Proxy” (SSP). It is a reverse DTLS and

64 CHAPTER 3

CoAP proxy that provides a secure bridge between clients on the Internet and con-
strained IoT devices in a low-power and lossy network. By employing DTLS on
both legs of the communication path, the resulting system can still enjoy most of
the benefits offered by the popularity of DTLS without suffering from the disad-
vantages of E2E security specific to constrained environments (as identified in the
previous paragraph). As the SSP operates as a trusted entity in the network, it can
also offer network services such as caching, as well as application-layer enhance-
ments. For the latter, this paper employs the concept of node virtualization where a
constrained node has a virtual counterpart that resides on the proxy and that offers
additional functionality on behalf of the node. This virtualization concept is effec-
tive because the SSP is deployed on hardware more powerful than the constrained
nodes themselves. As a result, node virtualization can offer new and complex
functionality that is unfeasible to offer on the constrained node itself. Examples
include support for more complex modes of DTLS (e.g., public key infrastructure
and certificate-based suites), translating responses between content formats, offer-
ing verbose semantic descriptions for the constrained node, storing large binary
blobs (e.g., a picture of the deployment area), keeping historical data, etc.

Our contributions in this paper are as follows. First, we identify and discuss a
number of issues with end-to-end security in constrained RESTful environments.
We argue that these issues can be overcome by a reverse proxy approach that splits
the end-to-end security at the proxy. Secondly, we design and implement such a
reverse proxy. Apart from solving the E2E security issues, our developed proxy
can also offer additional functionality and services on behalf of the constrained
network and the constrained nodes. To our knowledge, this work is the first to
study, design, implement and evaluate a reverse proxy for use with end-to-end se-
curity in constrained RESTful environments. Finally, by means of a real-world
evaluation, we show that our work can significantly improve the operation of con-
strained networks by reducing power consumption, network latency and network
traffic.

The rest of this paper is structured as follows. First, a brief overview of CoAP
and DTLS is presented in the next section. Using this overview, a number of issues
with deploying CoAP and DTLS in low-power and lossy networks is presented in
Section 3.3. This section also lists the research goals of this work. In Section 3.4,
our approach to tackling these issues is presented together with the design of the
secure service proxy and an overview of the security risks related to breaking end-
to-end security. The secure service proxy is aligned to similar work in the literature
and the commercial world in Section 3.5. An extensive evaluation of our approach
based on both simulations and a real-world wireless sensor network testbed is pre-
sented in Section 3.6. Section 3.7 presents the conclusions that are drawn from
this work.

SECURE SERVICE PROXY 65

3.2 Overview of CoAP and DTLS

3.2.1 The Constrained Application Protocol (CoAP)
RFC 7252 [9] states that the Constrained Application Protocol (CoAP) is a spe-
cialized Web transfer protocol for use with constrained nodes and constrained net-
works in the Internet of Things. The protocol is designed for Machine-to-Machine
(M2M) applications such as smart energy and building automation. The main
design considerations for CoAP include simplicity, very low overhead, easy trans-
lation to and from HTTP and support for multicast.

In CoAP, constrained devices that host applications structure their data and ac-
tions as RESTful Web services, also called CoAP resources. CoAP clients send
requests to resources in order to retrieve and store data or trigger actions. CoAP de-
fines the same request methods as HTTP: GET, PUT, POST and DELETE. They
are used respectively for retrieving data, storing data, toggling an action and re-
moving data. CoAP chose UDP as its transport protocol due to the lightweight
nature of UDP (TCP was deemed too verbose due to its connections and too com-
plex to implement in constrained devices). Therefore, CoAP includes a simple
reliability layer and deduplication mechanism in order to compensate for the mini-
malistic nature of UDP. In order to minimize overhead, CoAP uses a binary format
for encoding message options in the headers of CoAP requests and responses. As
a result, the CoAP message size is significantly reduced when compared to a non-
binary encoded protocol, such as HTTP [10], which is important in LLNs where
message sizes are typically small and communication is expensive for battery-
powered devices.

CoAP request (8 bytes):
42 01 72 56 ff 12 b1 74

Version: 1 (0x42)
Type: Confirmable (0x42)
Token length: 2 (0x42)
Request code: GET (0x01)
Message ID: 0x72 56
Token: 0xff 12
Uri‐Path option: t (0xb1 74)

CoAP response (12 bytes):
62 45 72 56 ff 12 c0 ff 31 37 2e 30

Version: 1 (0x62)
Type: Acknowledgement (0x62)
Token length: 2 (0x62)
Response code: 2.05 (0x45)
Message ID: 0x72 56
Token: 0xff 12
Content‐Format: plain‐text (0xc0)
End‐of‐options marker: 0xff
Payload: 17.0 (0x31 37 2e 30)

GET /t

2.05 Content: 17.0

2 b
2 b
4 b
8 b

16 b
2 B

1+1 B

2 b
2 b
4 b
8 b

16 b
2 B
1 B
1 B
4 B

4 B

Figure 3.1: Anatomy of a typical CoAP request and response.

An illustration of a typical CoAP request/response exchange is shown in Fig-
ure 3.1, where a client (a ventilation unit) retrieves a temperature resource on a

66 CHAPTER 3

CoAP server. The first elements of the CoAP header are the two-bit protocol ver-
sion (RFC 7252 standardizes Version 1) and the two-bit message type. By sending
a confirmable message, a sender can ask a receiver to acknowledge the reception
of a message. This is reflected in the message type of the response, which is
an acknowledgment. In most cases (like here), the response message is actually
piggy-backed on the acknowledgment message in order to reduce the number of
messages. The four-bit token length comes after the message type in the CoAP
header, and it represents the length of the optional message token in bytes. The
next element of the CoAP header is the eight-bit message code, which consists of a
three-bit class and a five-bit subfield. Requests codes are Class 0 codes (e.g., GET
is code 0.01), and successful response codes are Class 2 codes (e.g., Content is
code 2.05). The final part of the fixed four-byte CoAP header is the two-byte mes-
sage ID. It is used for deduplication and for confirmable (CON) messages, where
acknowledgments echo the message ID of the CON message. The token is used
to match a response with a request and can vary in length between zero and eight
bytes. After the token come the header options and the payload (if any). In CoAP,
header options are assigned unique numbers by IANA and are delta encoded in
CoAP messages in order to reduce their encoding size. Every option encoding
contains the delta of the option number (relative to the preceding option), the size
of the value of the option (in bytes) and the value of the option. Finally, the options
and the payload are separated by an end-of-options marker (0xff).

The CoAP Observe option [11] is a CoAP protocol extension that is important
for this work. When a client is observing a REST resource on a CoAP server,
the server will notify the client of state changes for that resource. This frees the
client from polling the resource on the server, which can save resources in LLNs
when changes in resource state occur rarely. RFC 7641 [11] also states that inter-
mediaries must aggregate observation registrations: “If two or more clients have
registered their interest in a resource with an intermediary, the intermediary MUST
register itself only once with the next hop and fan out the notifications it receives
to all registered clients. This relieves the next hop from sending the same notifica-
tions multiple times and thus enables scalability”. Apart from enabling scalability,
aggregation also saves resources.

3.2.2 Datagram Transport Layer Security (DTLS)
For security, CoAP standardized end-to-end security and DTLS as its default secu-
rity mechanism and protocol respectively. The primary motivation for preferring
transport-layer security over alternatives such as object security and network layer
security is the popularity of TLS on the conventional Web. Datagram TLS is by
design very similar to the TLS protocol, and the specification of DTLS is largely
written as a set of changes to the TLS specification [12]. However, there are some
key differences as DTLS runs over an unreliable datagram transport while TLS
runs over a reliable TCP transport. Therefore, DTLS must cope with the reliable
and ordered delivery of packets as available in TLS. To this end, DTLS introduces
a simple timeout and retransmission scheme and adds an explicit sequence number

SECURE SERVICE PROXY 67

to the Record Protocol (versus an implicit number as available via TCP in TLS).
Another difference is that stream ciphers must not be used with DTLS. DTLS also
enhanced the handshake protocol with a stateless cookie exchange for denial of
service resistance. By forcing DTLS clients to echo the cookie in their second
handshake message, malicious clients (e.g., those spoofing IP addresses) can be
rooted out, and a DTLS server can avoid wasting resources on bogus handshakes.

DTLS is a session-based protocol in that DTLS endpoints have to set up a
session when they want to communicate securely. Negotiation of the security pa-
rameters for the session and peer authentication are both performed during the
handshake phase of the protocol. After the handshake phase, both endpoints can
exchange data with guarantees for confidentiality, endpoint authentication and
integrity of the data. To this end, DTLS employs symmetric cryptography for
data encryption according to an encryption algorithm and encryption keys that are
agreed upon during the handshake. DTLS also guarantees message integrity by
means of Hash-based Message Authentication Codes (HMAC). Sessions are typ-
ically negotiated on an ad hoc basis, although long-term sessions and resumption
of established sessions are possible in DTLS.

TLS introduces the concept of cipher suites; these are named combinations
of the authentication and key exchange algorithm, the cipher and key length, the
cipher mode of operation, the hash algorithm for integrity protection and the hash
algorithm for use with pseudorandom functions.

DTLS
client

DTLS
server

ClientHello

ClientHello
with Cookie

HelloVerifyRequest

ServerHello
Certificate*

ServerKeyExchange*
CertificateRequest*

ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
ChangeCipherSpec
Finished ChangeCipherSpec

Finished

Figure 3.2: The full DTLS handshake.

The DTLS handshake is shown in Figure 3.2. In order to reduce the number of
network packets, multiple DTLS messages can be grouped into a single flight of

68 CHAPTER 3

messages. In the figure, the horizontal arrows correspond to the different message
flights. The DTLS client initiates the handshake with the ClientHello message, to
which the server replies with a HelloVerifyRequest message. The HelloVerifyRe-
quest message contains the stateless cookie for DoS mitigation and must be echoed
by the client in its second ClientHello message. After the server has verified the
cookie, it responds with the ServerHello message. The hello messages are used
to establish security enhancement capabilities between the client and server [13].
They establish the following attributes: protocol version, session ID (used in ses-
sion resumption), cipher suite and compression method. Additionally, two random
values are generated and exchanged: one for the client and one for the server.

The messages of the remainder of the handshake depend on the negotiated
security enhancement capabilities. In the figure, messages marked with an aster-
isk (*) are optional or situation-dependent messages. The figure shows the mes-
sage flow for a certificate-based cipher suite where the server replies with Cer-
tificate, ServerKeyExchange, CertificateRequest and ServerHelloDone messages.
If the cipher suite requires the server to authenticate itself, then the server sends its
X.509 certificate in a Certificate message. In cases where the key exchange does
not use the server certificate, the server may send a ServerKeyExchange message.
For example, in Pre-Shared Key cipher suites (PSK suites are discussed later),
the server may send a hint in the ServerKeyExchange message to help the client
in selecting which PSK identity to use. Additionally, the server may also send
a CertificateRequest message to request a certificate from the client. Finally, a
ServerHelloDone message is sent by the server to indicate that the hello-message
phase of the handshake is complete.

If the server requested a certificate, the client must provide one in its Certifi-
cate message. Next, the client sends a ClientKeyExchange message, the contents
of which depend on the chosen key exchange algorithm. In the case of RSA for
example, the client chooses a secret and encrypts it with the public key from the
certificate of the server and sends the result in the ClientKeyExchange message.
Together with the Certificate and ServerKeyExchange messages of the server, the
client’s Certificate and ClientKeyExchange messages are used for the key ex-
change. The CertificateVerify message allows the client to prove the possession
of the private key in the certificate. In the case of pre-shared key cipher suites,
the key exchange of the client consists of a ClientKeyExchange message, which
contains the identity of the chosen PSK.

Next, the client sends a ChangeCipherSpec message, which signals that the
client has switched to the negotiated cipher spec. The client then immediately
sends the Finished message, which contains a hash of the shared secret and all
handshake messages. The server must verify the contents of the Finished mes-
sage in order to detect any tampering of the handshake messages. The Finished
message also proves that the client knows the correct shared secret (i.e., the pre-
master secret), and any subsequent keying material (master secret, encryption keys
and MAC keys) is generated from this pre-master secret. After the server has sent
its own ChangeCipherSpec and Finished messages and the client has successfully
verified the Finished message, the handshake is completed, and secure communi-

SECURE SERVICE PROXY 69

cation of application data can start.

3.2.3 DTLS in constrained environments
There are a number of additional protocol features that are applicable to DTLS
in constrained environments, and these are discussed in this subsection. RFC
5116 [14] introduced Authenticated Encryption with Associated Data (AEAD) to
TLS, which enables the use of cipher suites that use the same cipher for confiden-
tiality, authenticity and integrity protection. Particularly in constrained environ-
ments, AEAD provides the benefit of more compact implementations as only one
cipher has to be implemented.

RFC 6655 [15] defines multiple such compact cipher suites that use the wide-
spread AES cipher in the Counter with Cipher Block Chaining-Message Authen-
tication Code (CBC-MAC) Mode (CCM). AES is a popular choice in constrained
environments, as it is often accelerated in hardware in modern IoT systems (e.g.,
the TI CC2538 SoC has an AES accelerator on the same die as the ARM-M3
CPU). Note that the AEAD construct is only supported from Version 1.2 of the
DTLS protocol.

RFC 4279 [16] introduces Pre-Shared Key (PSK) cipher suites for TLS. These
cipher suites are interesting for constrained devices, as the size of the key exchange
is minimal: typically only a PSK identifier in the client key exchange is exchanged.
Of course, key management is an important issue in this case, as common cryptog-
raphy practice dictates that a unique PSK should be allocated for every peer. The
‘TLS PSK WITH AES 128 CCM 8’ cipher suite combines the benefits of PSKs
and AES-CCM in that only one cipher is needed (AES), and the key exchange is
minimal. This cipher suite is also the mandatory-to-implement PSK cipher suite
for DTLS in the CoAP RFC [9]. Furthermore, this suite uses just an eight-byte au-
thentication tag (as opposed to a 16-byte tag), which is more suitable in networks
where bandwidth is constrained and messages sizes may be small.

RFC 7250 [17] introduces a new certificate type and two TLS extensions for
exchanging Raw Public Keys (RPKs) in DTLS. In this case, a peer has an asym-
metric key pair, but it does not have an X.509 certificate; this asymmetric key pair
is the RPK. This extension allows the raw public key to be used for authentication,
which is beneficial in constrained environments as RPKs are smaller in size than
X.509 certificates. Additionally the resulting key exchange is therefore smaller, as
well. Of course, the scalability benefits of a Public Key Infrastructure (PKI) are
lost when using RPKs.

Finally, RFC 7251 [18] describes the use of AES-CMM elliptic curve cryp-
tography (ECC) cipher suites in DTLS. This type of cipher suites uses the AEAD
mechanism to provide confidentiality, authenticity and integrity of application data
with just AES, while using Ephemeral Elliptic Curve Diffie–Hellman (ECDHE) as
their key exchange and peer authentication mechanisms. ECC is attractive for con-
strained environments as its smaller key sizes result in savings for power, memory,
bandwidth and computational cost [19]. For example, a 256 to 383-bit ECC key
is considered comparable in strength to a 3072-bit RSA key by NIST [20]. CoAP

70 CHAPTER 3

mandates the use of the ‘TLS ECDHE ECDSA WITH AES 128 CCM 8’ cipher
suite for X.509 certificates in constrained environments. This cipher suite uses the
secp256r1 or NIST P-256 elliptic curve.

3.3 Problem statement and research goals
When securing communications in LLNs via end-to-end security with DTLS, one
should be mindful of a number of potential issues and pitfalls. Some of these is-
sues arise due to the limitations of the constrained devices that secure the commu-
nications. For example, in end-to-end security, there is a considerable difference
between constrained devices (and their protocols) and powerful Internet hosts (and
their protocols) in terms of available resources and design. A second potential is-
sue stems from the DTLS protocol itself, namely the large overhead of the DTLS
handshake can be an issue of concern in constrained networks. A third group of
issues is related to securing the LLN itself and is the result of deploying end-to-end
security in LLNs. Apart from these issues related to end-to-end security in LLNs,
there is also the problem of the limited amount of application layer functionality
that can be provided by constrained IoT devices. In a world as heterogeneous as
the IoT there exists a need for protocol translation, data format mapping, semantic
descriptions and many other features that improve the interoperability with IoT
devices. Similarly, network access to constrained nodes and LLNs should be as
efficient as possible by supporting caching of information, efficient discovery and
network edge filtering. These types of functionality are too complex and in some
cases impossible for implementation on a constrained device. Clearly, an approach
that does not burden the constrained device is needed in this case. The remainder
of this section discusses these various issues and problems in more detail.

3.3.1 End-to-end security in LLNs
Constrained devices with a limited power source (e.g., battery powered or energy
scavenging devices) should take care to avoid excessive network communications
in order not to preemptively deplete the power source. Similarly, constrained net-
works where the available throughput is in the order of a few kbps should minimize
the amount of network communications to avoid congestion. Therefore, chatty or
verbose security protocols that communicate excessive amounts of information
should be avoided in these situations. As DTLS employs UDP instead of TCP
as its transport protocol, it avoids the TCP handshake, which reduces the num-
ber of messages exchanged between DTLS clients and servers. However, some
options supported by DTLS, as presented in the previous section, may lead to
large amounts of network communications. Specifically, certificate-based cipher
suites involve sending the certificate of the DTLS server (and peer, depending on
the security needs) over the network. These certificates are generally large (i.e., a
thousand bytes or more), and therefore, their network communication can be prob-
lematic when communication has a large impact on the power source or the net-

SECURE SERVICE PROXY 71

work. As a result, these types of devices are unable to offer authentication based
on PKI certificates. While raw public keys are significantly more compact than
X.509 certificates, they do not offer the same benefits in terms of authentication
and scalability.

For devices with limited computational power (e.g., low-cost embedded sys-
tems) certain cryptographic primitives may prove too complex for computation
by the low cost microcontroller. While hardware acceleration may help to alle-
viate this issue, it can be an expensive option and might only be available for
certain primitives: e.g., AES is often accelerated in hardware, while others are
not. Specifically, public-key cryptography methods (e.g., based on large integer
factorization or discrete logarithm problems) and key agreement schemes (such as
(EC)DH) may be too taxing for constrained microcontrollers. Therefore, the set
of cryptographic functions that can be offered by such low cost embedded systems
excludes a number of common cryptographic primitives and is typically limited to
what can be achieved by symmetric-key cryptography.

Another important limitation in constrained environments is the low amount
of available memory (i.e., both volatile and non-volatile memory). For exam-
ple, according to IETF RFC 7228 [4], Class 1 constrained devices have around
10 kibibyte (KiB) of RAM and 100 KiB of ROM memory. Such a small amount of
memory must accommodate an entire networking stack, adequate security mecha-
nisms, peripheral control, the application itself and various other subsystems. This
forces a device manufacturer to limit the amount of software that will ship with
the device by carefully selecting what is needed. One consequence is that it is
impossible for these devices to support a wide range of DTLS extensions and ci-
pher suites (e.g., only one suite might be supported). This also means that verbose
operations such as checking certificate revocation lists or performing OCSP [21]
checks typically cannot be supported.

Powerful Internet hosts on the other hand may expect constrained devices to
support security features similar to those found on the conventional Internet (e.g.,
with strong authentication and key agreement schemes). As constrained devices
cannot support these features (see above), an alternative is to consider third party
systems (e.g., middleboxes or off-path systems) that offer such features on behalf
of constrained devices. However, in this case, a big issue with conventional end-
to-end security is that as the connection is secured end-to-end, a third party is
excluded from the communication. Thus, an important question addressed by this
work is how third parties can take part in securing (but also optimizing; see later)
communications with constrained devices in order to bridge the gap with powerful
Internet hosts.

While DTLS can avoid the TCP handshake, it still has to perform its own
handshaking mechanism in order to negotiate key exchange and authentication
methods. The overhead of this handshake in terms of delay or amount of net-
work traffic can be problematic for some types of constrained nodes and networks.
Specifically, previous research has shown that in duty-cycled multi-hop networks,
the delay introduced by the DTLS handshake can run up to fifty seconds [8] for
four wireless hops. The authors also correctly conclude that the memory for stor-

72 CHAPTER 3

ing the DTLS session state on constrained nodes is typically limited to a handful
of nodes for Class 1 devices. Additionally, other research [22] has shown that
ephemeral DTLS sessions with constrained devices should be avoided as their en-
ergy expenditure is up to 60% higher when compared to a single DTLS session
with a long lifetime. Therefore, one goal of this work is to limit the impact of the
DTLS handshake on delay and energy expenditure, while supporting more than
just a handful of simultaneous DTLS sessions per constrained device.

The third group of issues stems from naively deploying end-to-end security
in (multi-hop) Low-power and Lossy Networks (LLNs) and from allowing un-
monitored access to LLNs to malicious users. In these networks, resources are
sparse (see above), and care should be taken in order to avoid unwanted deple-
tion of these resources by Denial-of-Service (DoS) attacks. For example, by re-
peatedly opening and closing DTLS sessions, a malicious user can significantly
reduce the lifetime of a battery-powered device. A malicious user could also send
large datagrams to the LLN, which will trigger fragmentation that can exhaust the
allocated network buffers in the LLNs. Most of these resource-depletion threats
can be mitigated by monitoring and restricting access to the LLN at the edge of
the network, where an unconstrained firewall or gateway system resides. How-
ever, end-to-end security encumbers such systems from authenticating parties (as
constrained devices cannot support strong authentication) and therefore restricting
access to authorized parties. Here, this work will study how end-to-end security
can be reconciled with the need for traffic filtering at the edge of the network and
the need for strong authentication.

3.3.2 Complex application features in LLNs
Apart from security issues, there is another important category of problems that
relate to the functionality at the application layer for constrained devices, which
is targeted by this work. Firstly, the same constraints that prohibit offering ex-
tensive security features also apply to implementing application features on the
constrained device. This is one of the reasons why the IETF has standardized spe-
cial purpose protocols and data formats for use in constrained environments (e.g.,
CoAP and CoRE Link Format (CLF) [23]). However, traditional Internet hosts do
not always implement these protocols and data formats. In these cases, a protocol
and data format translation should occur that enables the Internet host to commu-
nicate with the constrained device (e.g., an HTTP/CoAP proxy and a JSON/CLF
mapper). Such a translation has to be performed by an unconstrained third party
system (e.g., gateway). Secondly, some types of functionality can be ineffective
when they are offered on the constrained device. An example is caching the re-
sponses of a constrained server on the device itself, which will not save any net-
work traffic. A second example is the aggregation of observation relationships
by intermediaries; clearly, this has to be offered on an intermediary and not on a
constrained node in order to have any effect. Note that conventional end-to-end
security does not allow for response caching or observation aggregation, as all
traffic passing at an intermediary is encrypted. Thirdly, some functionality can be

SECURE SERVICE PROXY 73

inefficient when they are implemented on the constrained device. An example is
storing verbose semantic descriptions on a constrained device, which will lead to
significant amounts of network traffic every time these descriptions are requested.
Another example of functionality that is inefficient to offer on constrained devices
is access control. Typically, the LLN will have already spent a significant amount
of resources delivering the request to its destination where it will end up being dis-
carded. Clearly, discarding this request before the network has wasted its resources
is more efficient. For these cases, this work will study how third party systems can
support and optimize the operations of constrained devices and LLNs.

3.3.3 Problem statement: illustration in a smart building use
case

Users:
• PKI based authentication
• Role and identity based ACL:

Employee, visitor, cloud system
• Mainly HTTP(S)
• WWW data formats:

XML/JSON

Smart building
LLN BR

Constrained devices:
• Strong authentication? PSK only
• Fine‐grained ACL?
• CoAP(S) only
• Compact data formats:

CLF, CBOR, binary, …

Border router + proxy:
• Authenticate devices & users
• Complex ACL policies
• CoAP(S)/HTTP(S) proxy
• Data formats translation
• Observe aggregation
• Caching

Building LAN Internet

Cl
ou

d
sy
st
em

s

Figure 3.3: In a smart building scenario, there is a wide variety of different users.
Constrained devices are unable to offer all necessary security and application features to
cater to these users. In the approach followed by this work, unconstrained systems (e.g.,
border routers (BRs)) assist by offering these missing features. CBOR: Concise Binary

Object Representation, ACL: Access Control List.

Figure 3.3 shows a smart building scenario that illustrates the problems tar-
geted by this work. In a smart building most of the building services can be moni-
tored and controlled over the Internet. Such services include for example the man-
agement of doors, lighting, climate control (e.g., AC), elevators and the monitoring
of presence in certain areas. Smart buildings, such as offices and public buildings,
typically have a large variety of users: visitors, cleaning staff, technicians, employ-
ees, etc. Similarly, there are also a number of computer systems that interact with
the smart building: e.g., systems for HVAC, surveillance, facility management,
etc. Each of these actors accesses the services offered by the building according
to specific access control rules that depend on the role and or identify of the actor,
e.g., the HVAC system can control the air conditioning units, but cannot control
the doors. However, the HVAC system might be allowed to monitor the status
of a door adjacent to an AC unit without being able to (un)lock it. Considering

74 CHAPTER 3

the limited resources of constrained devices (see above), managing and enforcing
which actions an actor is allowed to perform depending on their role or identity
quickly become too complex for the constrained devices. Furthermore, as most
constrained devices only support PSK-based authentication, such a system would
require management of shared secret keys between every two actors. Limitations
on the LLN and the constrained devices also prohibit these devices from offering
protocols and data formats that are common to the unconstrained actors, such as
HTTP(S) and XML/JSON. The gray center of the figure already hints at our ap-
proach detailed in the next section: a proxy offers many of the missing features on
behalf of the constrained devices.

Finally, one might question why this work relies on end-to-end security via
DTLS at all, when there appear to be many problems in constrained environ-
ments according to the discussion above. Our main motivations for doing so is
that DTLS is a proven (and secure) standard, is widely available, is commonly
used on the Web and is standardized for use with CoAP. Alternatives to DTLS
are either proprietary, or still in the process of standardization (e.g., Object Secu-
rity of CoAP (OSCOAP) [24]), not applicable to constrained environments (e.g.,
network layer security), or cannot provide the same level of security as DTLS
(e.g., physical layer security). Object security specifically can be considered com-
plementary to transport layer security, and while it is not considered in this work,
it can be combined with the work presented here (if feasible given the constrained
environments under consideration). The Related Work section discusses object
security in greater detail. While the literature shows that lightweight network se-
curity is feasible in constrained environments (e.g., compressed Internet Protocol
Security (IPsec) [25]), it is not considered in this work because CoAP standard-
ized end-to-end security over DTLS as its security mechanism.

3.4 The Secure Service Proxy
The approach followed in this work allocates one reverse CoAP(s) proxy per con-
strained device. The CoAP specification [9] defines a reverse proxy as “an end-
point that stands in for one or more other server(s) and satisfies requests on behalf
of these, doing any necessary translations”, and it also states that “The client may
not be aware that it is communicating with a reverse-proxy; a reverse-proxy re-
ceives requests as if it were the origin server for the target resource.” The reverse
proxy approach enables splitting the end-to-end communication between a con-
strained device and its client at the proxy with no need for any additional configu-
ration on the client (as mentioned in the CoAP specification). While the resulting
communication is no longer end-to-end, indeed the proxy will share DTLS security
contexts with both parties and will translate CoAP messages, the resulting system
has many benefits and is able to overcome all of the issues that are discussed in
the previous section. Additionally, our reverse proxy approach implements a vir-
tual device for every constrained device. This enables the reverse proxy to extend
a constrained device (beyond only proxying) by hosting functionality on the cor-

SECURE SERVICE PROXY 75

responding virtual device. Finally, by enabling the reverse proxy to be deployed
on any system (see design), it is not restricted by the limitations common to con-
strained IoT devices. In the next subsections, we argue that the benefits of this
approach far outweigh the downsides of splitting the end-to-end communication,
and we present our design for such a reverse proxy.

3.4.1 Motivation of approach
Our motivation for following a reverse proxy approach consists of two facets:
one for the security-related aspects of constrained devices and LLNs and one
for the application layer-related aspects of constrained devices. In terms of se-
curity, the reverse proxy approach allows one to setup two sorts of DTLS ses-
sions: “lightweight” sessions between the constrained devices and their reverse
proxy and fully-featured sessions between the proxy and the clients of the devices.
The lightweight sessions employ security primitives that are known to the con-
strained devices (e.g., pre-shared keys for authentication and key exchange), while
the fully-featured sessions can use conventional security methods that are known
to the clients: e.g., certificates for strong authentication and Elliptic Curve Diffie–
Hellman (ECDH) for the key exchange (including ephemeral key exchanges if
perfect forward secrecy is required). Additionally, the reverse proxy can be con-
figured to maintain one long-term session with the constrained device while simul-
taneously keeping active sessions with multiple clients. This allows one to over-
come the small session pool at the constrained devices (due to its limited memory,
see above), as well as limit the total number of handshakes performed by the con-
strained device during its lifetime. As a result, the impact of the DTLS handshake
on the LLN and the communication in terms of, e.g., traffic and communication
latency is lowered. Finally, the reverse proxy also protects the LLN from a number
of resource depletion attacks from attackers on the Internet. By design, a reverse
proxy handles all messages for all constrained devices in an LLN from Internet
hosts. Thus, the reverse proxy becomes the main traffic entry point for the LLN,
and therefore, it can inspect, filter and drop traffic in order to root out traffic from
malicious users. Combined with the strong authentication of clients and an access
control policy, this proxy can make more informed decisions in regards to filtering
traffic when compared to, e.g., a simple Internet firewall.

In terms of the application layer, a reverse proxy is free to process and trans-
form the requests it receives from clients as it chooses. A reverse proxy can im-
prove network access by offering features such as caching, network-edge access
control and enforcing congestion control algorithms. Interoperability with other
systems can be increased by, e.g., translating between HTTP and CoAP, which is
fairly straightforward considering the design goals of CoAP. Translation between
different data types (e.g., CoRE link format [23] to JSON) can also boost interop-
erability. Such a proxy can also implement additional application functionality on
behalf of the constrained device. Examples of such functionality include extending
the constrained device with semantic descriptions for its resources, a deployment
location photo, the weather near the device, etc. Additionally, a proxy can choose

76 CHAPTER 3

to facilitate adding, configuring and deploying such functionality via a plugin-like
system. This greatly eases the management of such functionality at run time by
making adding, updating, enabling and disabling such functionality easier.

It is important to reiterate that all of the above is possible without any addi-
tional configuration on either the constrained device or the client; nor does the
presented approach require any modifications to the standards compliant protocol
stacks (e.g., 6LoWPAN/DTLS/CoAP) running on the constrained device and the
client. Indeed, the client discovers the Internet endpoint of the constrained device
that is hosted on the proxy, and the proxy takes care of mapping every request to
the corresponding constrained device. In the scenario presented here, all configu-
ration is limited to the proxy. These last two benefits are an important differentiator
from existing work, as will be discussed in the Related Work section.

While the reverse proxy approach offers a number of benefits, it also entails
some risks that if ignored might undermine the presented system. One risk is that
the reverse proxy presents a single point of failure in terms of security and oper-
ation. Indeed, if the reverse proxy were to be compromised then, e.g., all session
keys and long-term keying material (pre-shared keys and private keys) could be
made public. As the proxy offers a RESTful interface for managing virtual hosts
and their keying material, this interface entails a security risk and should therefore
be properly hardened against malicious usage (see Section 3.4.3.1 for suggestions).
Likewise, if the reverse proxy were to be the target of a resource depletion attack,
then the constrained devices hosted by that proxy would become unreachable. On
the other hand, as the proxy is deployed on a more powerful system, the proxy
is more resilient to resource depletion attacks than constrained devices and net-
works. A second issue is the introduction of a third party (i.e., the proxy itself)
into the trust model by terminating the end-to-end security that must be trusted
by both the constrained device, as well as the clients. As all collected data and
issued commands pass via the proxy, this can raise privacy concerns when the de-
vice or the client does not trust the owner of the proxy. One option to mitigate
this privacy risk is to let the owner of the constrained devices operate the reverse
proxy on his or her own. To this end, our evaluation shows that a low-cost single
board computer (e.g., Raspberry Pi) is capable of hosting the proxy, which enables
on-premises deployments. To summarize, the proxy breaks end-to-end security in
order to provide additional features, which address operational and performance
concerns of resource constrained devices. This work argues that the benefits of ter-
minating the end-to-end security outweigh the security-related risks in the case of
‘Class 1’ resource constrained devices and networks. For less constrained devices
and networks, this balance might tip in favor of end-to-end security.

3.4.2 Secure Service Proxy: design
In order to enable our proxy to extend constrained devices with a wide range of
functionality, the design adopts the concept of virtual devices. In our design, every
virtual device is allocated a dedicated IPv6 address from an IPv6 subnet that is
either routed to the proxy or directly connected to the proxy. Every virtual device

SECURE SERVICE PROXY 77

has one or more endpoints associated with it. An endpoint corresponds to a trans-
port and application layer binding: e.g., UDP/CoAP, DTLS/CoAP, TCP/HTTP or
TLS/HTTP. For every virtual device, the proxy listens for traffic on each of its
endpoints; this is shown in the bottom left of Figure 3.4.

VD1,I

Transport layer security:
DTLS and TLS processing

… …VD1,II VDn,p‐1 VDn,pVDi,j

Application layer adapter execution

requests responses

AC1: /loc
AC2: /*

VD1,I

VD1,II
AC3: /loc
AC4: /*

VDi,j

ACk: /*
…

VDn
2002:2a:1
I: UDP/5683/CoAP

AC1, AC2
II: UDP/5684/DTLS

ACz

VDi
2002:2a:1
I: UDP/5683/CoAP

AC1, AC2
II: UDP/5684/DTLS

ACk

VD1
2002:2a:1
I: UDP/5683/CoAP

AC1, AC2
II: UDP/5684/DTLS

AC3, AC4

Virtual devices

• Management of virtual
devices: devices,
endpoints and adapter
chains

• Resource Directory
• Mirror server

SSP

REST API

Sessions
store

CacheACL Proxy
requests

responses
Cache Mirror

server

Cache Proxy
Static

Static

Figure 3.4: Secure Service Proxy: design.

The transport layer security block is responsible for handling the (D)TLS pro-
tocol for secure endpoints on behalf of virtual devices. As such, this block per-
forms (D)TLS handshakes, thereby authenticating the client and performing a
key exchange. To this end, the block interfaces with the virtual device configu-
ration (top right in the figure) to retrieve the TLS parameters that are configured
for the virtual device. These parameters include a list of available cipher suites and
keying material for the secure endpoint of the virtual device, as well as whether
the virtual device requires clients to authenticate themselves. Apart from the hand-
shake, this block is responsible for tracking active sessions with virtual devices (via
the sessions store). It also decrypts and verifies incoming (D)TLS application data
messages, which are passed on to the adapter execution block, as well as encrypts
outgoing application data that come from the adapter block. The keying mate-
rial and the protocol state used in the encryption and verification process naturally
depend on the endpoint involved.

Incoming messages contain (secured) requests, which are either HTTP or CoAP
requests. While our design supports adapters for both application layer proto-
cols, we foresee that HTTP requests will almost always be translated immediately
to a CoAP request. As such, we do not expect virtual devices to host only an
HTTP endpoint (although the design does support this). When the application
layer adapter execution block receives a request, it will search through the tree of
available adapter chains to search for a chain that is the most specific match for the
request. The current implementation supports searching based on the address and
endpoint of the virtual device, as well as the URI of the request.

Once a chain has been found, the execution block will pass the request along
the chain. Every element of the chain (i.e., an adapter) can either return (a modi-

78 CHAPTER 3

fied) the request, which will be passed to the next adapter in the chain, or stop the
execution of the chain by returning a response. The current implementation allows
returning a response from an adapter in a non-blocking (i.e., asynchronous) way,
as retrieving a response might involve a lengthy IO operation. Once the response
is available, it is passed along the chain in reverse. This allows adapters to process
and (if needed) modify the response before it is stored in the virtual device and
returned to the client.

Application layer adapters implement the functionality hosted by virtual de-
vices. The idea underlying adapters is to compartmentalize functionality into
modules that can be reused by virtual devices. When creating an adapter chain,
an instance for every adapter in the chain is created, and every instance is config-
ured according to the parameters exposed by the adapter type (see further). While
instances of adapters reside in adapter chains, they can be shared by more than
one adapter chain (AC). For example, in Figure 3.4, the same Static adapter in-
stance (colored orange) is shared by AC1 and AC3. This is mainly useful when the
same functionality should be available for multiple endpoints of the same virtual
device (e.g., CoAP and CoAPs) or when an adapter implements functionality that
does not require configuration that differs per adapter chain (e.g., a logging adapter
that logs all incoming requests for auditing purposes).

The proxy also exposes a networked interface in the form of a REST API to
manage virtual devices, which is shown in the bottom right of Figure 3.4. The
REST API allows creating and deleting virtual devices and their endpoints, as
well as instancing and deleting adapters and defining adapter chains. When cre-
ating (D)TLS endpoints, the REST API also allows specifying the cipher suites
supported by the virtual device, as well as the keying material (e.g., X.509 certifi-
cate or private key). Apart from the management interface, the proxy also hosts a
resource directory that contains the hosted virtual devices. Finally, a mirror server
is also available to enable resource updates from constrained devices that are asleep
for continuous and long periods of time (i.e., sleepy devices). This mirror server
can be used by virtual devices to interface with resources from sleepy constrained
devices.

Finally, the presented design allows one to deploy the proxy on different lo-
cations in the network by varying the IPv6 subnet for the allocation of virtual
device IPv6 addresses. We foresee two scenarios. In the first scenario, the proxy
resides close to the constrained devices by allocating addresses from a neighbor-
ing LAN network to virtual devices. An example would be a home LAN network
from which the proxy assigns unused addresses to virtual devices. In the case of a
6LoWPAN network, the proxy can be combined with the border router. This sce-
nario also aligns nicely with the distributed computing concept that is commonly
found in fog computing and in in-network processing [26]. In a second scenario,
the proxy resides further ‘upstream’ from the constrained devices (e.g., in a data
center, the cloud, etc.) and allocates addresses from a special-purpose IPv6 subnet
that is dedicated to virtual devices. In this scenario, the routing has to be con-
figured to route this special-purpose IPv6 subnet via the proxy (which is not a
problem in most data centers). Both scenarios are complementary and will depend

SECURE SERVICE PROXY 79

on the specific needs of the considered use-case: e.g., a proxy in the LAN network
means that data stay inside the home network, which may benefit privacy. Similar
considerations were previously discussed in the problem statement section.

3.4.3 Secure Service Proxy: implementation
For the implementation of our secure service proxy, we chose to build upon the
previous work in our CoAP++ framework (which in turn builds on top of the Click
modular router software). This choice provides a great amount of flexibility in
how we process the network traffic for the virtual (and constrained) devices, as all
routing functions are part of Click and can therefore be configured to our liking. In
terms of the (D)TLS implementation, we chose to use the wolfSSL library as this
offers the easiest API for managing sessions and integrating into the Click router
where most processing happens on network packets.

3.4.3.1 Virtual devices and endpoints

Virtual device endpoints are created and deleted via the management interface.
This is a straightforward REST interface that is hosted on the secure service proxy
over CoAPs. As this interface handles sensitive information such as keying mate-
rial, access is restricted to authorized users, which are allowed to manage endpoints
and adapter chains.

POST requests with an endpoint description are used to create a new endpoint
for a virtual device. The endpoint description contains both the virtual device
to which the endpoint belongs, as well as any configuration details describing
the endpoint itself. This description is serialized as a JSON object in the pay-
load of the POST request. For a plain-text CoAP endpoint, the configuration de-
tails are limited to the UDP transport port of the endpoint. For a DTLS CoAPs
endpoint, the configuration also includes information about the supported cipher
suites and any parameters for the cipher suites. In the current implementation, the
“TLS PSK WITH AES 128 CCM 8” and “TLS ECDHE ECDSA WITH AES
128 CCM 8” cipher suites are supported for CoAPs endpoints. When creating
an endpoint that supports the PSK cipher suite, the pre-shared-key and an (op-
tional) client identity hint have to be specified as parameters. For the elliptic curve
DSA suite, the secp256r1 private key and signed certificate have to be provided as
parameters. These are both encoded in base64 in the endpoint description. The
following listing contains an example POST request that creates a CoAP endpoint
for a virtual device hosted under 2001:6a8:1d80:23::1 on port 5684 with an ECC
cipher suite.

POST /virtualDevices
Content-Format: application/json
{
"address": "2001:6a8:1d80:23::1",
"prefixLen": 128,
"port": 5684,
"dtls": {
"supportedCipherSuites": [

80 CHAPTER 3

{
"cipherSuite": "TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8",
"parameters": {
"b64PrivateKey": "QVNO...==",
"b64Certificate": "LS0t...=="

}
}

]
}

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1˜128˜5684

The response of the secure service proxy links to a newly-created resource
that can be used to the delete the endpoint at a later time. This resource is also
used for managing the adapter chains that belong to an endpoint, as explained in
section 3.4.3.3.

3.4.3.2 Implemented application layer adapters

In terms of application layer adapters, our proxy currently implements the adapters
listed in table 3.1. This section describes each of the adapter types in more detail.

The access control adapter applies Access Control List (ACL) rules to the
CoAP(s) requests it processes. ACL rules are parsed as JSON objects that as-
sign allow and deny rules to either a username or a role of users. An allow and
deny rule consists of a regular expression, which is applied to the request URI, and
a list of request methods. In case no matching ACL rule is found, then the default
policy of the adapter instance (either accept or deny) is applied. The following
JSON serialization of an example ACL rule gives user “bob” full access to the
devicename resource, while access to the lock resource is restricted to read only.

{"username": "bob",
"allow": [{"uri-regex":"devicename", "methods":["GET", "PUT", "POST", "DELETE"]},

{"uri-regex":"lock", "methods":["GET"]}],
"deny": []}

Hosting a virtual resource on a virtual device is the task of the static resource
adapter. In order to allow arbitrary content types of the payload, the value of
the virtual resource is encoded in base64 in the configuration of the adapter. An
example is shown in the next section.

The cache adapter serves and caches responses for requests to virtual devices.
The cache adapter calculates a cache key for every CoAP request it handles. When
a fresh response matching the cache-key is found, the adapter chain’s execution
is halted, and the cached response traverses the adapter chain in reverse. Re-
sponses processed by the cache adapter are handled in accordance with Section
5.9 of the CoAP RFC [9]. This means that, e.g., a ”2.05 Content” response will
be cached, while a ”2.04 Changed” response will mark any stored response as
not fresh. Cached responses are removed when they expire after their Max-Age
option. Note that the cache adapter does not implement the ”Validation Model”
specified in Section 5.6.2 of the CoAP RFC [9]. When used in conjunction with
access control, it is important that all ACL rules are applied before hitting the

SECURE SERVICE PROXY 81

Table 3.1: The proxy offers a number of functionalities, called adapters, that are hosted on
virtual devices. The list of adapters that were implemented at the time of this work are

shown in this table.

Adapter Functionality Configuration
parameters

Access control Restrict access to virtual devices depend-
ing on client identify, request method and
URI.

ACL rules
and default
policy

Static resource Host RESTful resources on virtual devices
that can be read and modified.

Payload and
content type

Cache Cache and serve previous responses from
virtual devices to clients.

Default cache
entry lifetime

Congestion con-
trol

Enforce congestion control on clients
querying virtual devices. Per device and
network wide rules are implemented.

Per user CC
limits

.well-known/core Manipulate discovery responses from vir-
tual devices to include functionality hosted
by the proxy.

None

Proxy Proxies requests for the virtual device to a
CoAP(s) server (e.g. the constrained de-
vice). Also aggregates observe registra-
tions.

CoAP(s)
server end-
point

Mirror server Proxies requests for a virtual device to a
mirror server.

Mirror server
endpoint and
sleepy device
anchor point

cache, as the execution of the request leg of the adapter chain will stop when a
cache hit is found. The underlying implementation caches responses in memory
via a memcached instance.

The congestion control adapter in its current form applies traffic shaping on
a per host basis. Currently, it is possible to limit the number of open requests
between a client and a specific virtual device and between a client and a group
of virtual devices. This group encompasses all virtual devices with an adapter
chain that shares the same congestion control adapter instance. Open requests
are requests for which a response has not been sent yet. If a client reaches its
limit, then the request is dropped until either a response is received or one of the
prior requests of that client is removed after a time out period (can be configured).
Finally, a client can either be identified by its endpoint address or by its identity
derived from the authentication credentials during the (D)TLS handshake.

The .well-known/core (wkc) adapter is responsible for including the function-
ality that is hosted on the virtual devices in the resource discovery responses of the
real constrained device. In the current implementation, the wkc adapter asks ev-

82 CHAPTER 3

ery adapter from all of the adapter chains that are defined for the virtual device to
modify the discovery response from the real device. This way, the static resource
adapter can add a link to its virtual resource, and the ACL adapter can remove links
for resources that the user is not authorized to access. To this end, every adapter
type offers a “processDiscoveryResponse” method that is used by the wkc adapter.

The proxy adapter takes a request for a virtual device and issues a new CoAP
request to the corresponding actual constrained device. Therefore, an instance of
this adapter is configured with the CoAP(s) endpoint of the constrained device.
Only the transport layer addresses are changed; the new CoAP request is copied
from the output of the previous adapter in the adapter chain (with the exception
of the message ID and the token, of course). The proxy adapter will either re-
trieve a response or generate a time-out; therefore, it always comes last in adapter
chains. This adapter will also combine observation registrations when it receives
multiple registrations for the same resource on a virtual device. Likewise, it also
multiplexes responses from constrained devices to multiple clients in case there is
more than one ongoing observation registration.

Finally, the mirror server adapter is a special type of proxy adapter in that it
issues CoAP(s) requests to a mirror server instead of the constrained device itself.
Apart from the end point of the mirror server, also the handler of the constrained
device is configured into the mirror server adapter instance. For instance, a request
to the coaps://vd1.iot.test/status resource on a virtual device would be translated to
coaps://ms.iot.test/ms/0/status.

3.4.3.3 Adapter chain management: interface

Once an endpoint for a virtual host has been allocated on the proxy, adapter chains
can be created and hosted on that endpoint. Building on our previous exam-
ple, the listing below contains a CoAP request that instantiates an adapter chain,
which contains the access control, well-known core rewriting, caching and for-
ward CoAPs proxy adapters. Again, the payload is a JSON object that describes
the chain and contains the parameters for the different adapter instances. The
adapter chain is created as the default chain via the wildcard character in the chain
path. The default chain is executed for requests where no other adapter chains with
a matching URI path are found.

POST /virtualDevices/2001:6a8:1d80:23::1˜128˜5684
Content-Format: application/json
{

"path": "/*",
"pipeline": [

{
"type": "acl",
"default_access_control_policy": "deny",
"rules": [

{"username": "fvdabeele",
"rules": [{"uri-regex":"regex1", "allowMethods":["*"]},

{"uri-regex":"regex2", "allowMethods":["GET"]}]},
{"username": "*",
"rules": [{"uri-regex":"regex1", "denyMethods":["*"]},

{"uri-regex":"regex2", "allowMethods":["GET"]}]}

SECURE SERVICE PROXY 83

]
},
{

"type": "wkc"
},
{

"type": "cache",
"default_lifetime": 60

},
{

"type": "proxy",
"scheme": "coaps",
"addr": "bbbb::1",
"port": 5684

}
]

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1˜128˜5684/*

The second example, shown in the listing below, details how a static resource
is created on the endpoint of our virtual host (in this case, it contains a semantic
description of the virtual host in the RDF format). The chain also illustrates the
linked adapter, which refers to the ACL adapter instance that was created in the
previous listing. The link points to the management resource of the adapter in-
stance.

POST /virtualDevices/2001:6a8:1d80:23::1˜128˜5684
Content-Format: application/json
{

"path": "/rdf",
"pipeline": [

{
"type": "linkedAdapter",
"link": "/virtualDevices/2001:6a8:1d80:23::1˜128˜5684/*/0"

},
{

"type": "static",
"contentType": 41,
"value": "PGh0d...=="

}
]

}

2.01 Created /virtualDevices/2001:6a8:1d80:23::1˜128˜5684/rdf

Finally, note that the parameters of existing adapters can be updated via a PUT
request to the management resource of the adapter instance. In this case, the pay-
load is a JSON object where the keys are the parameter names. Likewise, adapters
and chains can be deleted via their respective management resources.

3.4.3.4 Authenticating (D)TLS clients on the SSP

In order to facilitate the authentication of users and the authorization of user ac-
tions, the SSP links client authentication information (e.g., TLS PSK or X.509
client certificate) with users and roles. The current implementation is limited to
using TLS primitives for supplying authentication credentials, although in the fu-
ture, alternatives might be considered (e.g., lightweight application-layer access

84 CHAPTER 3

tokens). For example, a (D)TLS session that was setup with PSK1 as the pre-
shared key can be linked with userA. Likewise, attributes in a client X.509 certifi-
cate that is signed by a party trusted by the SSP can be linked with a specific user,
e.g., a certificate issued by CAA with the common name attribute set to fvdabeele
can be linked with userB. Finally, the proxy also exposes a RESTful interface for
managing which credentials belong to which user and the roles of users.

3.4.3.5 Key management between SSP and constrained devices

The SSP contains an in-memory repository of pre-shared keys and corresponding
identity hints in order to setup DTLS sessions with resource-constrained CoAPs
servers. As this repository contains all of the keying material for the constrained
devices known to the proxy, it contains sensitive information and should be han-
dled accordingly. In the current implementation, this repository is initialized when
the SSP process is started. A future extension could enable at run-time manipula-
tion of this repository by, for example, specifying keying material when instantiat-
ing coaps proxy adapters. Currently, this has not yet been implemented, as in our
use cases, this repository does not change frequently and remains stable. In use
cases where the repository is more volatile, such an extension could enable better
key management.

3.5 Related work
The concept of device virtualization in the IoT is widespread in the literature,
though often times under different names such as sensor, thing and object virtu-
alization. Indeed, in [27], the authors present a survey on object virtualization in
the IoT stating that “the concept has become a major component of current IoT
platforms where it aids in improving object energy management efficiency and
addressing heterogeneity and scalability issues”. The authors classify existing ar-
chitectures as one or many real objects for one or many virtual objects. While the
focus in this work has been on one real object for one virtual object, the flexibility
of the presented design enables the same adapter to be shared by multiple virtual
devices, as well as one virtual device to span multiple physical devices (for exam-
ple, a virtual device combining all lamps in a room).

There exist numerous works in the literature that study the benefits of using
third parties or intermediaries in constrained environments. In order to narrow the
scope of this section, only works that are relevant in the context of constrained
RESTful environments are discussed here. In [28], Kovatsch et al. discuss mov-
ing application logic from firmware to the cloud. According to the vision of the
authors, devices are thin servers exposing RESTful resources for data access and
actuation, and most of the application logic would reside in the application servers.
While our approach also advocates thin servers for devices, deploying the SSP in
the cloud is optional. In use-cases where local access is important, the SSP may
reside closer to the devices (e.g., deployed in the LAN) in order to meet require-

SECURE SERVICE PROXY 85

ments with respect to latency, privacy or availability. Additionally, the SSP may
support constrained nodes and applications servers by providing functionality such
as caching and more scalable authentication and authorization. The IPv6 address-
ing proxy presented in [29] is an example of an intermediary system for mapping
legacy technologies to the IPv6 Internet of Things. By allocating IPv6 addresses to
map to different legacy technologies, the approach is similar to the virtual devices
presented in our work. Note that the adapter concept provides the flexibility to map
virtual devices to different technologies similar to the work in [29]. While not pre-
sented in this work, the SSP has been used to host LoRaWAN end devices as vir-
tual IPv6 CoAP endpoints via an Advanced Message Queuing Protocol (AMQP)
publish/subscribe adapter that interfaced with the LoRaWAN network server. The
authors in [30] propose to interconnect Web applications based on HTTP and Web
sockets with CoAP-based wireless sensor networks via a CoAP proxy. The CoAP
proxy focuses on translating between different protocols and closely follows the
guidelines outlined in RFC 8075 [31]. The scope of the SSP is broader, as it in-
cludes transport security, access and congestion control next to mapping HTTP to
CoAP. Finally, note that the forward proxy approach of Ludovici differs from the
reverse proxy approach of the SSP. In [32], Mongozzi et al. introduce a framework
for CoAP proxy virtualization in order to address the scalability and heterogene-
ity challenges faced in large-scale Web of Things deployments. The framework
installs a reverse CoAP proxy on the sensor network gateway and then applies
virtualization so that the proxy can be customized and extended by third parties
without modifying the reverse proxy. All interactions of these virtual proxies with
smart objects pass via this reverse proxy, which acts as an arbiter for access to the
limited resources of the smart objects. The presented approach is interesting as
the containerization of the virtual proxies into virtual machines makes them more
flexible than the adapter approach followed in the SSP. We have experimented with
providing some degree of extensibility by creating adapters from python scripts in
the SSP (these scripts could be uploaded via the adapter chain management in-
terface). While this python adapter type provided some degree of customization,
the lack of proper process isolation meant that (malicious) scripts could stall the
SSP. As such, these python adapters did not make the final SSP design. While
the concept of the virtual proxies is interesting, the extent of the work is limited
as the focus lies on the virtualization technique, and interesting features such as
scalable security and efficient and authorized network access are not considered.
Instead, the authors focus on providing service differentiation between multiple
virtual proxies. Also note that proxy virtualization is not the same concept as de-
vice virtualization, though they can be used to solve similar problems. The same
authors of [32] look at the specific problem of proxying CoAP observation effi-
ciently for different QoS requirements in [33]. While the scope of the work is
quite different from this paper, the use of a reverse proxy for bundling observa-
tion relationships is shared between the two works. Another example of device
virtualization in RESTful environment is [34], where the authors assign virtual
coap servers to RFID tags. The actual CoAP servers are not running on the tags
though. Instead, they reside on RFID readers, which are able to enhance tags with

86 CHAPTER 3

additional functionality (such as discovery). This work has parallels with the SSP,
which enhances constrained devices by means of application layer adapters.

A second category of relevant works in the literature studies the challenges
faced by transport layer security in constrained IoT environments. There are a
number of works that study the DTLS handshake, as it is a fairly complex and
verbose process with significant resources requirements for constrained devices.
In [35], Hummen et al. propose a delegation architecture that offloads the expen-
sive DTLS connection establishment to a delegation server, thereby reducing the
resource requirements of constrained devices. The delegation architecture also en-
ables more complex authorization schemes, as it has more resources at its disposal.
The authors report significant reductions on memory overhead, computations and
network transmissions on constrained devices. Our termination method can also
provide complex authorization schemes of the virtual device. In Section 3.6.1, we
have also reported significant savings in regards to CPU and network resource us-
age (and consequently, energy usage). While our approach still requires an active
DTLS session between the SSP and the constrained device, the number of hand-
shakes during the lifetime of a device is drastically reduced. While the memory
requirements are not as low as in [35], they are still lowered as the constrained
device can limit the number of simultaneous sessions to one. Finally, note that our
approach does not require any changes to the DTLS stack running on the device.
The work in [36] focuses on various challenges in deploying DTLS in resource-
constrained environments. Similarly to [35], the approach revolves around hand-
shake delegation. The authors adopt the concept of secure virtual things in the
cloud where physical things delegate the session initiation to their corresponding
virtual thing. As a result, physical things can limit their DTLS implementation to
only the record layer protocol, which leads to drastic memory savings. One in-
teresting aspect of the presented architecture is that the physical thing can assume
both roles of client and server. Unfortunately, the concept of virtual things is not
extended beyond the handshake delegation mechanism. It would be interesting
to combine a delegation mechanism with some of the findings presented in our
work. A hybrid option would be possible where the delegation mechanism is used
for the most constrained devices (requiring a custom lightweight DTLS stack) and
where the termination mechanism can be used for devices with sufficient mem-
ory (i.e., where a full DTLS stack is feasible) or where the DTLS stack cannot be
customized to implement the delegation method.

Object Security of CoAP (OSCOAP) [24] is an IETF Internet Draft standard-
izing end-to-end security of CoAP options and payload at the application layer.
While the specification focuses on the forwarding case when using a forward
proxy (which excludes caching), it does include an appendix describing a mode
of operation, Object Security of Content (OSCON), which is compatible with
caching responses at intermediaries. The draft notes that OSCOAP may be used in
extremely-constrained settings, where CoAP over DTLS may be prohibitive, e.g.,
due to large code size. Nevertheless, the authors state that OSCOAP may be com-
bined with DTLS, thereby benefiting from the additional protection of the CoAP
message layer present in DTLS-based security. Note that the standardization ef-

SECURE SERVICE PROXY 87

forts focus on the case of a forward proxy, whereas this work focuses on a reverse
proxy approach. As such, the trust models are different as the reverse proxy repre-
sents the end device from the point of view of the client. Despite the difference in
proxy models, the two approaches remain compatible and could strengthen each
other. For example, the SSP could implement OSCOAP for cases where clients
are employing a forward proxy, which is not trusted by the client. Additionally, it
would be interesting for the SSP to support OSCOAP as a lightweight alternative
for DTLS to protect communications with constrained devices with severe mem-
ory limitations. In such a case, clients would communicate securely with the SSP
over DTLS while the communications between the SSP and the constrained de-
vices would be protected either via OSCOAP (e.g., for constrained devices with
severely limited memory) or via DTLS (e.g., for constrained devices with suffi-
cient memory).

Finally, in high volume Web environments, transport layer security is often
terminated at a proxy deployed close to the Web server(s). The main motivation
for terminating TLS is that it enables load balancing, where terminated HTTPS
requests are distributed over multiple Web servers. Load balancing increases the
availability of the Web deployment, as the outage of one Web server does not af-
fect the service availability in this case. Popular Web proxy software, like nginx
and HAProxy, supports different reverse proxy deployment options for terminat-
ing TLS. Similarly, the elastic cloud computing platform of Amazon.com, Ama-
zon Web Services, supports TLS termination and load balancing by virtue of its
HTTPS listener service. While the main motivation of the SSP for session termi-
nation is not load balancing, the SSP does apply termination in order to be able
to move computationally-expensive and verbose operations from constrained de-
vices to the proxy, which improves performance. Similarly to high availability
TLS proxies, the SSP may reduce key management complexity, as all keying ma-
terial for public communications is stored on one system.

3.6 Evaluation: results and discussion
This section presents two evaluation scenarios that show the gains attainable by
our approach. Such gains include: a decrease in load on constrained devices and
the LLN, lower energy usage for constrained devices, an increase in user handling
capacity of LLNs, more responsive LLNs, more scalable authentication and better
authorization. The evaluation scenarios were chosen to evaluate the impact of the
proxy on two specific operational aspects of LLNs: setting up DTLS sessions with
constrained devices over multiple wireless hops and observing CoAPs resources
on constrained devices from multiple DTLS clients.

3.6.1 Terminating end-to-end-security at the SSP
The first evaluation scenario is geared towards quantizing the impact of splitting
end-to-end security at the smart service proxy. More specifically, the goal is to

88 CHAPTER 3

study the impact of re-using a DTLS session of a constrained CoAPs server on the
operation of both the constrained node, as well as the CoAPs client.

3.6.1.1 Simulation setup

Extensive simulations were performed with a nine-node 6LoWPAN network ar-
ranged in a cross topology as detailed in Figure 3.5. One node is at the center of
the cross and is the RPL border router of the 6LoWPAN network; four nodes are in-
termediate routers (each located in the middle of one of the four legs of the cross);
and the last four nodes are CoAP(s) servers that are located at the four ends of the
cross. The border router is connected to the smart service proxy, which is running
on the same PC as the Cooja simulator. Finally, an unconstrained CoAP(s) client
interacts with the CoAP(s) servers. In the evaluation scenario, the client sends the
following sequence of CoAP(s) requests: a .well-known/core discovery request,
a sensor measurement request for the “/s” resource and an actuator request for
the “/a” resource. The constrained CoAPs servers are running er-coap and Tiny-
DTLS (in Contiki) configured to accept the ”TLS PSK WITH AES 128 CCM 8”
cipher suite with a PSK hint of 15 bytes.

4

3

1

2

5

67

8 9

Figure 3.5: Cooja network topology: four CoAP(s) servers (6, 7, 8, 9) are located two
hops away from the RPL border router.

The same request sequence was sent to the CoAP(s) servers for one reference
case and three different SSP configurations: Plain Text (PLT), End-to-End (E2E),
first Termination (TER1) and n-th Termination (TER). In the PLT configuration,
all requests are sent over plain text CoAP. This is a reference cases for the other
three cases. In the E2E case, all requests are sent over CoAPs without any termi-
nation of DTLS sessions at the SSP. In the case of TER1 and TER, all requests
are sent over CoAPs, and the DTLS session is terminated at the SSP. For TER1,
there does not exist an active DTLS session between the proxy and the constrained
node. Therefore, a new DTLS session must be setup between the SSP and the
constrained node. For TER, the active DTLS session in the LLN can be re-used,
and there is no need to setup a new DTLS session with the constrained node. For

SECURE SERVICE PROXY 89

all DTLS cases, the DTLS client always sets up a new DTLS session at the start
of a request sequence. It also tears down the existing session at the end of every
sequence. As such, this testing scenario represents a large number of DTLS clients
that would interact with the constrained CoAPs servers over the lifetime of the con-
strained node. For each configuration, the request sequence was run four hundred
times, i.e., one hundred times per DTLS server. All results were obtained using
the default CSMA MAC protocol and ContikiMAC RDC protocol as available in
Contiki.

3.6.1.2 Results

Figure 3.6(a) shows the Total Transaction Time (TTT). This is the time between
the start of the DTLS session handshake (i.e., when the first ClientHello message
is sent by the client) and the end of the DTLS session (i.e., when the DTLS Fin-
ished message is received by the client). There is a significant reduction in TTT
between the E2E and the TER configurations: their medians are 4879 ms and
2060 ms, respectively. This is due to the DTLS session re-use in the LLN, which
saves, when comparing the median cases, thirteen packets in the LLN, as the DTLS
handshake in the LLN can be avoided in the TER configuration. As a result, the
TER configuration is able to closely match the reference plain-text case in terms
of TTT. The 233-ms difference in the median is caused primarily by the overhead
of the additional DTLS headers. More specifically, the overhead triggers 6LoW-
PAN fragmentation for the large discovery response in the TER case, whereas this
fragmentation is absent in the PLT case.

Figure 3.6(b) displays the energy usage for the different configurations. The
stacked bar plot shows the median energy usage per category on the constrained
device, whereas the box plot shows the total energy usage (to show the dispersion
of the measurements). Again, there exist a significant difference between the E2E
and the TER configurations: 32,485 J vs. 13,133 J respectively (a reduction by
a factor of 2.4). Similarly to the TTT results, this reduction is primarily due to
the absence of the DTLS handshake in the LLN. This is confirmed by the bar plot
where the energy usage for the RX and TX categories are reduced the most. The
energy consumption in the CPU category is also significantly lower, as the CPU is
in low-power mode more often and does not have to perform expensive hash calcu-
lations when completing the handshake. All in all, the results allow us to conclude
that our approach increases the responsiveness of constrained devices (provided
there is an active session in the LLN) while reducing the energy consumption for
traffic loads with many DTLS sessions (e.g., traffic loads with many parties).

Finally, it is worth pointing out that our approach drastically limits the total
number of handshakes that a constrained node will perform during its lifetime.
Apart from the savings discussed above, this also has the additional benefit that, in
lossy networks, the total number of failed handshakes will be lower. Indeed, Garcia
et al. [37] have shown that in lossy networks, the fraction of failed handshakes can
vary significantly based on the packet loss ratio: e.g., 30 to 40% of handshakes fail
for a packet loss ratio of ˜20%. By limiting the total number of handshakes, our

90 CHAPTER 3

E2E TER1 TER PLT

T
o
ta

l T
T

 (
m

s)

 2
,0

0
0

 4
,0

0
0

 6
,0

0
0

 8
,0

0
0

(a) Total transaction times (TTT) for the request sequence

E2E TER1 TER PLT

M
e

d
ia

n
 e

n
e

rg
y

u
sa

g
e

 p
e

r
c
a
te

g
o
ry

 (
u

J)

0
 5

,0
0

0
1

0
,0

0
0

1
5

,0
0

0
2

0
,0

0
0

2
5
,0

0
0

3
0

,0
0

0
3
5

,0
0
0

CPU
IRQ
TX
RX

0
 5

,0
0
0

1
0
,0

0
0

1
5

,0
0

0
2
0

,0
0
0

2
5
,0

0
0

3
0
,0

0
0

3
5

,0
0

0

T
o
ta

l E
n
e

rg
y

U
sa

g
e
(u

J)

(b) Median energy usage per category (left axis) and total energy usage
(right axis).

Figure 3.6: Transaction times and energy usage of the CoAPs servers for the three
gateway configurations (End-to-End (E2E), first Termination (TER1), n-th Termination

(TER)) and the Plain Text CoAP reference case (PLT).

SECURE SERVICE PROXY 91

approach also limits the amount of constrained device resources wasted on these
failed handshakes. On the other hand, care should be taken to periodically refresh
keying material as needed by the underlying cryptographic primitives in use.

3.6.2 Aggregating multiple CoAPs clients at the SSP
The second evaluation scenario focuses on the impact of the SSP on constrained
devices that serve multiple CoAPs clients simultaneously via CoAPs observation.
Unlike clear text CoAP observation, notifications for one CoAPs client typically
cannot be reused to serve another client due to the confidentiality of the notifica-
tion in DTLS. However, the SSP presented in this work can, as a reverse CoAPs
proxy, observe one CoAPs resource on a constrained device and use these notifica-
tions to serve a multitude of CoAPs clients. The presented evaluation considers up
to ten CoAPs clients that observe a resource on a constrained device and compares
the case of end-to-end observation versus observation via the SSP. Note that one
should keep in mind client authorization when using one CoAPs stream of noti-
fications for serving multiple CoAPs clients, e.g., a client that is not authorized
to access a resource on the constrained device must also be denied access to that
resource via the SSP. To this end, this work presents and implements an access
control adapter, which enforces CoAPs resource-specific access control policies.

3.6.2.1 Experiment setup

48

152

49

50

47

51

45

52

4643

44

Figure 3.7: Representative RPL network topology: the node under study, node #50, is
situated two hops from the border router, node #152.

To quantify the impact of aggregating CoAPs observations at the SSP, a num-
ber of experiments were run on a WSN testbed. The experiments consisted of a
6LoWPAN network with ten sensor nodes arranged on a line with six meters of
spacing between adjacent nodes. An additional sensor node (Node #152) is sit-
uated to the upper left of the line and is connected to a Raspberry Pi 2, where
it serves as the RPL border router. The smart service proxy software is running
on the Raspberry Pi 2. In order to cope with the changes in the RPL topology

92 CHAPTER 3

between experiments and over time in the same experiment, Node #50 was se-
lected for testing as it was always located two hops away from the border-router.
A representative network topology is shown in Figure 3.7. Note that depending
on the experiment, Node #50 might have a different parent than Node #47 (e.g.,
Node #43 was a common alternative), but in all experiments, there was always an
intermediary router between the border router and Node #50.

All wireless sensor nodes employ the msp430f5437 uC with 128 KB of RAM
and 256 KB of ROM and the TI CC2520 802.15.4 transceiver. As such, the plat-
form is identical to the WiSMote platform in Contiki in terms of the specifica-
tions that are relevant for the presented results. The sensor nodes run a TinyDTLS
CoAPs server, which is configured to support three simultaneous DTLS sessions
and one simultaneous DTLS handshake. While a binary for four simultaneous
sessions could be built, it was not running stably. Attempts to support more than
four clients led to a RAM overflow during linking. By default, er-coap in Con-
tiki sends one confirmable notification for every twenty notifications. Finally, all
sensor nodes in the network are running the default CSMA MAC protocol and
ContikiMAC RDC protocol available in Contiki.

For every sensor node, a corresponding virtual host was created on the SSP.
The virtual hosts were configured similar to the listing in Section 3.4.3.1, with sup-
port for the “TLS ECDHE ECDSA WITH AES 128 CCM 8” cipher suite. This
cipher suite provides perfect forward secrecy by means of an ephemeral Diffie–
Hellman key exchange between the virtual hosts and the DTLS clients. Addition-
ally, DTLS clients authenticate virtual hosts by means of the x.509 certificates of
the hosts, which are signed by a Certificate Authority (CA) trusted by the clients.
Similarly, the DTLS clients also present an x.509 certificate during the DTLS
handshake, which is signed by a CA that is trusted by the proxy. As a result,
the clients may be authenticated at the proxy-side (by mapping attributes from the
certificate to a user in the proxy; see Section 3.4.3.4), which is mandatory for the
use of the access control adapter in order to provide fine-grained authorization as
presented in Section 3.4.3.2. Each virtual host was allocated a global IPv6 address
from the LAN network of the Raspberry Pi2 and has one default adapter chain
with access control, caching and proxy adapters. The CoAPs clients ran as part
of the CoAP++ framework on a PC that was located three IPv6 hops away from
the Raspberry Pi2. All IPv6 addresses in use (i.e., CoAPs clients, RPI, virtual
hosts and WSN nodes) were working, global IPv6 addresses. An overview of the
evaluation setup is shown in Figure 3.8.

In all experiments, a number of CoAPs clients observes a resource on either
the virtual host or the sensor node. As such, the experiments considered two cases:
end-to-end (E2E) CoAPs observations and CoAPs observations via the SSP. In
both cases, experiments were run for two CoAPs resources: a resource with a
one-second notification period and another resource with a five-second notification
period. In the E2E case, experiments were performed with one, two and three
simultaneous CoAPs clients. In the SSP case, experiments were performed with
one, two, three, four, five and ten simultaneous CoAPs clients. In total, eighteen
experiments were performed. Each experiment was run for at least twenty minutes,

SECURE SERVICE PROXY 93

6LoWPAN
WSN

IPv6 routers CoAPs servers
One to ten

CoAPs clients

E2E

SSP
OBS

SSP with
virtual hosts

AGGR

Figure 3.8: Evaluation setup: a variable number of CoAPs clients observe one of two
resources on either the virtual host (SSP) or the sensor node (E2E)

during which the energy outputs for all sensor nodes were captured every five
seconds, and the outputs from the CoAPs clients were stored, as well. This enabled
us to quantity the energy usage, as well as the application-layer performance, the
results of which are presented in the following section.

3.6.2.2 Results

When comparing the energy expenditure graphs for Node #50 in Figure 3.9, it
becomes clear that aggregating CoAPs observation relationships leads to energy
savings. The savings are proportional to the rate of notifications: they increase as
the number of clients goes up and decrease as the notification interval becomes
longer. Note that the sensor node between Node #50 and the border router expe-
riences similar energy savings as every notification is received and retransmitted
by this intermediary node. For the case of three CoAPs observers, the median en-
ergy expenditures differ by 10.8 mJ for the one-second interval and 2.5 mJ for the
five-second interval.

For one CoAPs observer and the one second interval, there exists a small differ-
ence in energy expenditure between the end-to-end and the SSP case even though
the notification rate is the same for both cases (i.e., one notification per second).
This is primarily due to a difference in notification packet size, as the 6LoWPAN
compression for SSP notifications is more effective than for E2E notifications. The
compression is more effective because the IPv6 address of the SSP is part of the
6LoWPAN network, whereas the CoAPs client’s IPv6 address is part of a different
network. As such, the prefix of the SSP’s IPv6 address can be elided (due to state-
ful 6LoWPAN compression), which leads to an eight-byte savings in packet size
per notification.

The graphs in Figure 3.10 clearly illustrate the difference in notification rate
between the end-to-end and SSP experiments. Due to the aggregation of CoAPs
observations at the SSP, there exists only one CoAPs observation between the SSP
and the sensor node. This is illustrated in the constant notification rate for SSP
as the number of CoAPs observers increases. For the end-to-end experiments, the
notification rate rises linearly with the number of observers, as the sensor node
sends notifications to each client separately. The slope of this linear relation is
proportional to the notification frequency.

Figure 3.11 plots the Notification Loss Ratios (NLR) for each of the eighteen

94 CHAPTER 3

0

50

100

150

1 2 3 4 5 10
Number of CoAPs observers

En
er

gy
 e

xp
en

de
tu

re
 p

er
 5

 s
ec

on
ds

 fo
r n

od
e

#5
0

(m
J)

E2E

SSP

(a) One second notification interval.

0

50

100

150

1 2 3 4 5 10
Number of CoAPs observers

En
er

gy
 e

xp
en

de
tu

re
 p

er
 5

 s
ec

on
ds

 fo
r n

od
e

#5
0

(m
J)

E2E

SSP

(b) Five seconds notification interval.

Figure 3.9: Total energy expenditure for node #50 per five seconds interval for
end-to-end (E2E) CoAPs observation versus CoAPS observation through the Smart

Service Proxy (SSP)

SECURE SERVICE PROXY 95

0

10

20

30

1 2 3 4 5 10
Number of CoAPs observers

N
um

be
r o

f p
ac

ke
ts

 p
er

 5
 s

ec
on

ds
 in

te
rv

al
 fo

r n
od

e
#5

0

E2E

SSP

(a) One second notification interval.

0

5

10

15

1 2 3 4 5 10
Number of CoAPs observers

N
um

be
r o

f p
ac

ke
ts

 p
er

 5
 s

ec
on

ds
 in

te
rv

al
 fo

r n
od

e
#5

0

E2E

SSP

(b) Five seconds notification interval.

Figure 3.10: Number of exchanged packets for node #50 per five seconds interval for
end-to-end (E2E) CoAPs observation versus CoAPS observation through the Smart

Service Proxy (SSP)

96 CHAPTER 3

experiments. For example for the E2E, one-second interval and one observer case,
1845 notifications were sent, three of which never arrived at the client. This leads
to an NLR of 0.163%. Note that every vertical series of data contains as many
points as there are observers; however, very similar and identical NLR’s overlap
too much to distinguish them as separate points in the plot. The graphs for the
one second interval show that the end-to-end case suffers from network conges-
tion due to its higher notification rate. Furthermore, the observed loss is heavily
dependent on the CoAPs client in the E2E experiments: i.e., the client that is last
on the list of observers experiences the highest NLR (mostly apparent when there
are three observers). Finally, the SSP sends every notification as a confirmable
message. While in this setup, packet loss is mainly a problem in the constrained
WSN, sending all notifications as CON messages can help to improve the NLR in
situations where the client is a part of a lossy network.

To conclude, there are a number of limitations that are overcome by aggregat-
ing observations at the SSP:

1. Memory and processing constraints on the sensor node, which limit the
number of simultaneously active DTLS sessions and active CoAP obser-
vation relationships.

2. Limited throughput in constrained (multi-hop) networks, which impacts the
successful delivery of notifications and limits the rate of notifications.

3. Limited lifetime for battery-operated sensors: by reducing the load on con-
strained devices, the lifetime is lengthened.

Note that while only the results for Node #50 are shown, similar savings apply for
other nodes. Also note that applying observation aggregation at the SSP delays
the point at which the WSN reaches congestion, as the message rate in the WSN
is reduced by the aggregation. Finally, note that this experiment is only possible
because the SSP terminates the end-to-end security; indeed, should this not be the
case, then the SSP would be unable to aggregate observation relationships, as all
communications would be encrypted end-to-end.

3.7 Conclusions
In this work, we have presented the Secure Service Proxy: a CoAP(s) intermedi-
ary for use in resource-constrained RESTful environments. It has been designed
to provide scalable end-to-end security for constrained devices and to extend con-
strained devices with additional functionality. The presented work follows a re-
verse proxy approach, where the SSP hosts virtual devices on behalf of resource-
constrained devices. This approach enables the SSP to extend the virtual devices
with security features that are hard to attain in constrained environments, such as
authentication based on public key infrastructure (which, inherently, scales better
than using PSKs), perfect forward secrecy and fine-grained authorization based on

SECURE SERVICE PROXY 97

0.00

0.05

0.10

1 2 3 4 5 10
Number of CoAPs observers

N
ot

ifi
ca

tio
n

Lo
ss

 R
at

io

E2E

SSP

(a) One second notification interval.

0.00

0.02

0.04

0.06

0.08

1 2 3 4 5 10
Number of CoAPs observers

N
ot

ifi
ca

tio
n

Lo
ss

 R
at

io

E2E

SSP

(b) Five seconds notification interval.

Figure 3.11: Notification loss ratios as measured at the CoAPs clients for
end-to-end (E2E) CoAPs observation versus CoAPS observation through the Smart

Service Proxy (SSP)

98 CHAPTER 3

host identify and the nature of the request and resource. Additionally, the SSP ex-
tends virtual devices with a variety of different functions by means of an adapter
chain system. Adapters are modular blocks of functionality that are hosted on the
virtual device. Examples include caching, static resource and congestion control
adapters. The SSP hosts a RESTful Web interface for managing virtual devices
and adapter chains.

The SSP has been evaluated in two different setups. First, tests were performed
in an LLN simulator to measure the effect of terminating end-to-end security on
the SSP. The results of the simulator study demonstrate that session termination
combined with long-term sessions in the constrained network leads to significant
savings in network traffic, communication delay and processing and, consequently,
leads to a longer battery life. The second study was run on a WSN testbed and
quantified the impact of aggregating multiple observation relations with a con-
strained device over DTLS. The results confirm that the load on the constrained
device and constrained network is independent of the number of observers. As
a result, the packet rate and energy expenditure remain equal to those of the one
observer case as the number of observers increases. Note that the session termina-
tion is a necessary condition for observation aggregation in case of DTLS-based
security.

In conclusion, the presented Secure Service Proxy breaks end-to-end secu-
rity in order to offer security primitives that are hard to attain on constrained
systems while reducing the load on resource-constrained devices and networks.
Additionally, the proxy provides extra application-layer features on behalf of con-
strained devices to services, which are built on top of these devices. Combined,
the proxy facilitates the integration of constrained RESTful environments in ser-
vices, thereby furthering the vision of an open, secure and scalable Web of Things.

SECURE SERVICE PROXY 99

References
[1] Joseph Bradley, J. Barbier, and D. Handler. Embracing the Internet of Ev-

erything To Capture Your Share of 14.4 Trillion USD. Cisco Ibsg Group,
page 2013, 2013. Available from: http://www.cisco.com/web/about/ac79/
docs/innov/IoE{ }Economy.pdf.

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of
things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet
of Things (IoT): A vision, architectural elements, and future direc-
tions. Future Generation Computer Systems, 29(7):1645–1660, sep
2013. Available from: http://www.sciencedirect.com/science/article/pii/
S0167739X13000241, doi:10.1016/j.future.2013.01.010.

[4] C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for
Constrained-Node Networks. Technical report, IETF, 2014. Available from:
http://tools.ietf.org/html/rfc7228.

[5] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F. Hu.
Wireless sensor networks: A survey on the state of the art and the 802.15.4
and ZigBee standards. Computer Communications, 30(7):1655–1695,
2007. Available from: http://www.sciencedirect.com/science/article/pii/
S0140366406004749, doi:http://dx.doi.org/10.1016/j.comcom.2006.12.020.

[6] T. Winter and P. Thubert. RFC 6550: RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks, 2012. Available from: https://tools.ietf.org/html/
rfc6550, doi:10.17487/RFC6550.

[7] H. Tschofenig and T. Fossati. RFC 7925: Transport Layer Security (TLS)
/ Datagram Transport Layer Security (DTLS) Profiles for the Internet of
Things. RFC 7925, 2016. Available from: https://rfc-editor.org/rfc/rfc7925.
txt, doi:10.17487/RFC7925.

[8] M. Vucinic, B. Tourancheau, T. Watteyne, F. Rousseau, A. Duda,
R. Guizzetti, and L. Damon. DTLS Performance in Duty-Cycled Networks.
In International Symposium on Personal, Indoor and Mobile Radio Commu-
nications (PIMRC - 2015), 2015. Available from: http://arxiv.org/abs/1507.
05810, arXiv:1507.05810.

[9] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. RFC 7252: Constrained
Application Protocol (CoAP), 2014. Available from: https://tools.ietf.org/
html/rfc7252.

[10] K. Kuladinithi, O. Bergmann, and M. Becker. Implementation of CoAP and
its Application in Transport Logistics. In Proceedings of the Workshop on
Extending the Internet to Low power and Lossy Networks, 2011.

http://www.cisco.com/web/about/ac79/docs/innov/IoE{_}Economy.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoE{_}Economy.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://www.sciencedirect.com/science/article/pii/S0167739X13000241
http://tools.ietf.org/html/rfc7228
http://www.sciencedirect.com/science/article/pii/S0140366406004749
http://www.sciencedirect.com/science/article/pii/S0140366406004749
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc6550
https://rfc-editor.org/rfc/rfc7925.txt
https://rfc-editor.org/rfc/rfc7925.txt
http://arxiv.org/abs/1507.05810
http://arxiv.org/abs/1507.05810
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252

100 CHAPTER 3

[11] K. Hartke. RFC 7641: Observing Resources in the Constrained Application
Protocol (CoAP). Technical report, IETF, 2015. Available from: https://
tools.ietf.org/html/rfc7641.

[12] E. Rescorla and N. Modadugu. RFC 6347: Datagram transport layer secu-
rity version 1.2, 2012. Available from: https://tools.ietf.org/html/rfc6347.

[13] T. Dierks and E. Rescorla. RFC 5246: The Transport Layer Security (TLS)
protocol version 1.2. Technical report, IETF, 2008. Available from: https:
//tools.ietf.org/html/rfc5246.

[14] D. McGrew. RFC 5116: An Interface and Algorithms for Authenticated En-
cryption. Technical report, IETF, 2008. Available from: https://tools.ietf.org/
html/rfc5116.

[15] D. McGrew and D. Bailey. RFC 6655: AES-CCM Cipher Suites for Trans-
port Layer Security (TLS). Technical report, IETF, 2012. Available from:
https://tools.ietf.org/html/rfc6655.

[16] P. Eronen and H. Tschofenig. RFC 4279: Pre-shared key ciphersuites for
transport layer security (TLS). Technical report, IETF, 2005. Available from:
https://tools.ietf.org/html/rfc4279.

[17] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen. RFC 7250:
Using Raw Public Keys in Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). Technical report, IETF, 2014. Available
from: https://tools.ietf.org/html/rfc7250.

[18] D. Bailey, M. Campagna, R. Dugal, and D. McGrew. RFC 7251: AES-CCM
Elliptic Curve Cryptography (ECC) Cipher Suites for TLS. Technical report,
IETF, 2014. Available from: https://tools.ietf.org/html/rfc7251.

[19] E. Rescorla. RFC 4492: TLS Elliptic Curve Cipher Suites with SHA-256/384
and AES Galois Counter Mode. Technical report, IETF, 2008. Available
from: https://tools.ietf.org/html/rfc4492.

[20] E. Barker. NIST Special Publication 800-57 Part 1 Revision 4, Recom-
mendation for Key Management Part 1: General. Technical report, NIST,
2016. Available from: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-57pt1r4.pdf, doi:10.6028/NIST.SP.800-57pt1r4.

[21] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams.
RFC 6960: X. 509 Internet public key infrastructure online certificate status
protocol-OCSP. Technical report, IETF, 2013. Available from: https://tools.
ietf.org/html/rfc6960.

[22] F. Van den Abeele, T. Vandewinckele, J. Hoebeke, I. Moerman, and P. De-
meester. Secure communication in IP-based wireless sensor networks via
a trusted gateway. In IEEE Tenth International Conference on Intelligent

https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc7641
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc6655
https://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7251
https://tools.ietf.org/html/rfc4492
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc6960

SECURE SERVICE PROXY 101

Sensors, Sensor Networks and Information Processing (IEEE ISSNIP 2015),
2015.

[23] Z. Shelby. RFC 6690: Constrained RESTful Environments (CoRE) Link For-
mat, 2012. Available from: https://tools.ietf.org/html/rfc6690.

[24] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. Object Security of CoAP
(OSCOAP) (Work in progress), 2017. Available from: https://tools.ietf.org/
html/draft-ietf-core-object-security-03.

[25] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig. Secur-
ing communication in 6LoWPAN with compressed IPsec. In 2011 Interna-
tional Conference on Distributed Computing in Sensor Systems and Work-
shops (DCOSS), pages 1–8, 2011. doi:10.1109/DCOSS.2011.5982177.

[26] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing
and its role in the internet of things. Proceedings of the first edi-
tion of the MCC workshop on Mobile cloud computing - MCC ’12,
page 13, 2012. Available from: http://dl.acm.org/citation.cfm?doid=
2342509.2342513, doi:10.1145/2342509.2342513.

[27] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori. The Virtual Object as a Major
Element of the Internet of Things: A Survey. IEEE Communications Surveys
& Tutorials, 18(2):1228–1240, 2016. Available from: http://ieeexplore.ieee.
org/document/7320954/, doi:10.1109/COMST.2015.2498304.

[28] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving application logic from
the firmware to the cloud: Towards the thin server architecture for the inter-
net of things. In 2012 Sixth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, pages 751–756, 2012. Avail-
able from: http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?arnumber=6296948,
doi:10.1109/IMIS.2012.104.

[29] A. J. Jara, P. Moreno-Sanchez, A. F. Skarmeta, S. Varakliotis, and P. Kirstein.
IPv6 addressing proxy: mapping native addressing from legacy technolo-
gies and devices to the Internet of Things (IPv6). Sensors (Basel, Switzer-
land), 13(5):6687–712, jan 2013. Available from: http://www.mdpi.com/
1424-8220/13/5/6687/htm, doi:10.3390/s130506687.

[30] A. Ludovici and A. Calveras. A Proxy Design to Leverage the Intercon-
nection of CoAP Wireless Sensor Networks with Web Applications. Sen-
sors, 15(1):1217–1244, jan 2015. Available from: http://www.mdpi.com/
1424-8220/15/1/1217, doi:10.3390/s150101217.

[31] A. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk. RFC 8075:
Guidelines for Mapping Implementations: HTTP to the Constrained Ap-
plication Protocol (CoAP). Technical report, IETF, 2017. Available from:
https://tools.ietf.org/html/rfc8075.

https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/draft-ietf-core-object-security-03
https://tools.ietf.org/html/draft-ietf-core-object-security-03
http://dl.acm.org/citation.cfm?doid=2342509.2342513
http://dl.acm.org/citation.cfm?doid=2342509.2342513
http://ieeexplore.ieee.org/document/7320954/
http://ieeexplore.ieee.org/document/7320954/
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6296948
http://www.mdpi.com/1424-8220/13/5/6687/htm
http://www.mdpi.com/1424-8220/13/5/6687/htm
http://www.mdpi.com/1424-8220/15/1/1217
http://www.mdpi.com/1424-8220/15/1/1217
https://tools.ietf.org/html/rfc8075

102 CHAPTER 3

[32] E. Mingozzi, G. Tanganelli, and C. Vallati. CoAP Proxy Virtualization for the
Web of Things. In 2014 IEEE 6th International Conference on Cloud Com-
puting Technology and Science, pages 577–582. IEEE, dec 2014. Avail-
able from: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7037719,
doi:10.1109/CloudCom.2014.163.

[33] G. Tanganelli, C. Vallati, E. Mingozzi, and M. Kovatsch. Efficient proxying
of CoAP observe with quality of service support. In 2016 IEEE 3rd World Fo-
rum on Internet of Things (WF-IoT), pages 401–406. IEEE, dec 2016. Avail-
able from: http://ieeexplore.ieee.org/document/7845444/, doi:10.1109/WF-
IoT.2016.7845444.

[34] I. Farris, A. Lera, A. Molinaro, and S. Pizzi. A CoAP-compliant so-
lution for efficient inclusion of RFID in the Internet of Things. In
2014 IEEE Global Communications Conference, pages 2795–2800. IEEE,
dec 2014. Available from: http://ieeexplore.ieee.org/document/7037231/,
doi:10.1109/GLOCOM.2014.7037231.

[35] R. Hummen, H. Shafagh, and S. Raza. Delegation-based Authentication and
Authorization for the IP-based Internet of Things. In 11th IEEE International
Conference on Sensing, Communication, and Networking (SECON’14),
2014. Available from: http://www.comsys.rwth-aachen.de/fileadmin/papers/
2014/2014-hummen-secon-delegation.pdf.

[36] J. Park, H. Kwon, and N. Kang. IoTCloud collaboration to establish a secure
connection for lightweight devices. Wireless Networks, 23(3):681–692, apr
2017. Available from: http://link.springer.com/10.1007/s11276-015-1182-y,
doi:10.1007/s11276-015-1182-y.

[37] O. Garcia-Morchon, S. L. Keoh, S. Kumar, P. Moreno-Sanchez, F. Vidal-
Meca, and J. H. Ziegeldorf. Securing the IP-based internet of things
with HIP and DTLS. Proceedings of the sixth ACM conference on Se-
curity and privacy in wireless and mobile networks - WiSec ’13, page
119, 2013. Available from: http://dl.acm.org/citation.cfm?doid=2462096.
2462117, doi:10.1145/2462096.2462117.

http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7037719
http://ieeexplore.ieee.org/document/7845444/
http://ieeexplore.ieee.org/document/7037231/
http://www.comsys.rwth-aachen.de/fileadmin/papers/2014/2014-hummen-secon-delegation.pdf
http://www.comsys.rwth-aachen.de/fileadmin/papers/2014/2014-hummen-secon-delegation.pdf
http://link.springer.com/10.1007/s11276-015-1182-y
http://dl.acm.org/citation.cfm?doid=2462096.2462117
http://dl.acm.org/citation.cfm?doid=2462096.2462117

4
Improving User Interactions with

Constrained Devices in the Web of
Things

While the previous chapter focused on the underlying technical principles of Dis-
tributed Intelligence (DI), this chapter employs Sensor Function Virtualization
(SFV) to improve user interactions with constrained RESTful devices. As con-
strained devices are unable to offer rich Graphical User Interfaces (GUIs), this
chapter presents a web template rendering system that transforms CoAP responses
into HTML pages that may be served to a user’s mobile device over HTTP. Using
bootstrap, a common web template, responsive web GUIs are demonstrated for
device and resource discovery, as well as temperature monitoring and actuator
control.

? ? ?

Floris Van den Abeele, Enri Dalipi, Ingrid Moerman, Piet De-
meester and Jeroen Hoebeke
Published in the proceedings of the IEEE World Forum on the Internet of
Things (WF-IoT 2016), 12–14 Dec. 2016, Reston, Virginia, USA.

Abstract As the Internet of Things continues to grow rapidly in the coming years,
the number of devices with limited resources will continue to grow as well. These
so-called constrained devices typically implement specialized protocols and data

104 CHAPTER 4

formats for increased efficiency. While this reduces the load on constrained de-
vices, it also limits the usability of such devices for their users. This paper presents
a HTTP-CoAP proxy for improving the usability of constrained devices that im-
plement embedded web services. This is accomplished by rendering user inter-
faces and solving naming and routing issues. As a result, the user experience
of highly-optimized embedded web services is similar to that of conventional web
services. By means of small-scale experimentation, the presented approach is eval-
uated functionally and the usability is evaluated in terms of user interface respon-
siveness.

4.1 Introduction
According to numerous market research reports [1] [2] [3], the number of Internet-
connected devices will have risen drastically by the end of this decade. A consider-
able amount of these newly connected devices, are so-called “constrained devices”,
i.e. devices with tight limits on power, memory, connectivity, processing power,
cost and physical size. Due to their anticipated widespread usage, IoT devices are
expected to impact a large number of aspects of our society and our daily lives by
enabling a whole new range of services [4]. In order to realize these services, IoT
devices have to interact with each other, with their environments and with their
users.

On the other hand, users of such services expect an experience similar to the
conventional Internet services with which they are familiar: e.g. web browsing,
mobile applications, web search, etc. For services that build on constrained de-
vices, this is a challenge as the constraints intrinsic to these devices impose limits
on their functionality and as such on their usability. Consider, for example, a
battery-powered air monitoring device with a hundred kilo bytes of memory. For
such a device it is impossible to offer a web-based user interface that offers a user
experience similar to today’s popular web platforms.

There exist a number of solutions for overcoming this problem. A subset of
these rely on systems external to the constrained device for overcoming the limited
usability of such devices. More specifically, this work presents a web proxy based
approach for improving interactions between users and constrained devices in a
web of things context. We demonstrate how our approach solves a number of
usability problems common to low-power and embedded web services, thereby
showing the feasibility and effectiveness of our work.

4.2 Problem statement and research goals
Constrained devices are subject to a number of limitations, most of which are
the result of the required low device cost. As these limitations directly impact
the usability of constrained devices, they are briefly discussed in this paragraph.
Firstly, popular low-power micro controller families such as the ARM Cortex M3,

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 105

TI MSP430 and AVR ATmega offer many different models where the available
volatile memory varies between 8KB and 100KB and the read-only memory be-
tween 32K and 1024KB. In every use case a trade-off has to be made between cost
vs available memory space: 16KB RAM and 128 or 256KB ROM is a common
choice for systems in sensor and mesh networks. For battery-powered devices,
power consumption is a second important consideration. Low-cost devices typ-
ically have lifetimes equal to their battery lifetimes, as replacing the battery is
deemed too expensive. As a result, energy consumption should be kept to a mini-
mum by e.g. limiting computation and communication. Finally, a third important
constraint of networked systems is the employed communication technology. For
our discussion, it should enable low-power communication while keeping the com-
ponent cost (e.g. transceiver, amplifiers, antenna) low. A comprehensive overview
of the constraints is available in RFC 7228 [5]. As per RFC 7228 terminology, this
work focuses on Class 1 constrained devices, with ∼10KiB RAM and ∼100KiB
ROM.

Each of these discussed limitations impacts the usability of constrained devices
in different ways. In the class 1 systems under consideration, the limited memory
commonly has to fit the entire communication stack (i.e. everything above the
PHY layer) as well as the necessary logic to realize the intended service. As a
result, the remaining amount of memory left to also implement a high quality user
interface is typically very low. For example, a simple index page based on the pop-
ular bootstrap template for responsive web interfaces 1 requires 89.6KB of mem-
ory: Javascript (minimal jQuery and bootstrap: 44.6KB), CSS styling (38.4KB)
and HTML (6.5KB). One can increase the available memory to include all neces-
sary files or host the static media files (JS and CSS) externally. Even so, a con-
siderable amount of additional data for the UI (in the order of (tens of) kilo bytes)
would have to be transferred between the constrained device and the client. For
battery-powered devices, this would drastically hasten the depletion of the energy
source and therefore limit the lifetime of the device. In the case of low-throughput
networks, transferring the additional UI data could lead to long latency penalties as
the networks are not dimensioned to transmit large chunks of data. Consequently,
user experience would suffer under these long delays. As a result, class 1 devices
are considered to offer ‘bare-bone’ RESTful resources - via the specialized CoAP
protocol - that are cumbersome to use due to the lack of a UI.

Low-power network protocols such as 6LoWPAN and the RPL routing proto-
col also impact the usability of constrained nodes. In such networks, separate IPv6
networks are typically assigned to the low-power and lossy networks (LLNs). In
cases where global IPv6 routing for the LLNs is unfeasible (e.g. private LLNs),
the user is expected to reconfigure its network configuration to add a routing rule
to the LLN. For most users this is unrealistic. Additionally, the use of IPv6 means
that constrained nodes are reachable via 128 bit IPv6 addresses. As these long
addresses are impractical for human users, an alternative has to be provided. Also,
discovery of devices by a user might be difficult.

1https://getbootstrap.com/

https://getbootstrap.com/

106 CHAPTER 4

The goal of this work is to answer the following research question: given the
problems outlined above, how can direct user interactions with constrained de-
vices in low-power and lossy networks be improved? In answering the question,
this work looks at the problem from an embedded web services point of view as
realized with the IPv6 and CoAP protocols [6]. Although the focus is on these
technologies, the core concepts of this work are more broadly applicable.

4.3 User friendly interactions

4.3.1 Requirements
In analyzing the posed research question, the following requirements for suitable
solutions that improve user interactions are identified:

1. Impact on constrained devices should be kept to a minimum. Conse-
quently the device constraints outlined in the previous section remain unal-
tered.

2. Easy to use interfaces for the user. The user experience should be similar
to popular web-based services.

3. Handle a wide variety of constrained and user devices. When looking
only at embedded web services, a constrained device can serve many pur-
poses. Similarly, there exists a large range of user devices.

4. Minimal configuration and easy discovery. Any usable solution should
require minimal configuration from the user. It should also facilitate easy
discovery of constrained devices and their services.

5. Easy to build user interfaces. While building interfaces will require some
technical knowledge, it should be based on open and readily available tech-
nology to facilitate designers.

There are a number of approaches that fit the requirements outline above, some
of which are presented in the related work section. The approach in this work
is discussed in the following section and relies on web-based application proxies
combined with naming and discovery services.

4.3.2 Approach
Figure 4.1 outlines the approach of this work and how it differs from what is avail-
able today. Today, users interface with devices directly via CoAP or indirectly via
HTTP through a gateway. In both cases the user is served the unaltered CoAP
response, which is typically encoded in a compact but obscure binary format. Our
approach introduces web-based application proxies, whose main task is serving
web interfaces to users. The proxies process web requests from the user’s browser
and translate the requests into RESTful CoAP requests for constrained devices.

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 107

Responses from constrained devices are processed by proxies and used as input
for rendering web interfaces to users.

GWT
o
d
a
y

Device UserIPv6
CoAP

Binary/plaintext

HTTP/CoAP

Binary/plaintext
22°C

ProxyDevice UserDNS name

CoAP
Binary/plaintext

HTTP
WWW web interface

G
o
a
l

Figure 4.1: Our approach serves users web interfaces of embedded web services on
constrained devices.

One of the benefits of this approach is that all user interactions with the con-
strained devices make use of standard web technology (i.e. TCP/HTTP/WWW).
As a result, the web interfaces are available to a wide range of user devices (only
a web browser is needed). The proxies implement a template lookup interface
that returns the web interface template to be used for rendering a response to the
user. This lookup interface takes into account the resource type of the RESTful re-
source and the device type of the user device. Combined with leveraging the CoAP
standard, different web interfaces can be rendered for different types of resources
thereby supporting a wide range of constrained devices. Additionally, the device
detection of the proxies combined with well-known web technology for designing
templates enable user friendly interfaces that are adapted to the device of the user.

Template rendering

Response
rewriting

CoAP
client

cache

Browser
detection

HTTP
server

Device
mapping

Template
lookup

LLN

RD

GW
User devices

Web-based application proxy

Constrained devices

DNS

Figure 4.2: System overview

As CoAP is a highly optimized, binary application protocol specifically de-
signed for constrained environments, the impact of our approach on constrained
devices in terms of memory usage, communication overhead and battery life is
kept to a minimum. Also, this approach does not require any changes to the soft-
ware running on the constrained devices or the user’s web browser. Finally, by
interfacing with directory and naming services the proxies enable easy discovery
and naming of devices respectively.

108 CHAPTER 4

4.3.3 Design

An overview of the resulting system is shown in figure 4.2. The devices through
which a user interacts with the constrained devices are shown on the right, the
constrained devices are shown on the left. The middle shows the seven submod-
ules which make up the design of the web-based application proxy. In order to
offer all necessary functionality the proxies also interface with a Resource Direc-
tory (RD) [7] and a DNS name server, these are shown in the bottom right.

When a user directs its browser to a constrained device via the proxy, the
proxy starts processing the HTTP request by extracting the target CoAP URI of
the constrained device from the hosting HTTP URI. Depending on whether the
proxy is processing the request as a forward or reverse HTTP-CoAP cross pro-
tocol proxy (as per “Guidelines for HTTP-to-CoAP Mapping Implementations”
terminology [8]), the extraction method will differ. In the forward proxy case,
the target CoAP URI can readily be extracted from the hosting HTTP URI; e.g.:
http://proxy.example.com/hc/coap://s.example.com/light. In the reverse proxy
case, where the user surfs directly to the device (e.g. http://s.example.com/light),
the device mapping submodule maps the HTTP URI to the target CoAP URI.

Once the target CoAP URI is known, the proxy looks up the template for ren-
dering the CoAP resource response to the user. The template lookup module main-
tains a database of templates for different CoAP resource types and different web
browsers (mobile, desktop and miscellaneous). In case the resource type of the
CoAP resource is unknown, the template lookup module contacts the Resource
Directory to retrieve all meta information related to the target CoAP URI. The
browser of the user is identified by the browser detection module. This module
processes the HTTP header fields (mainly the User-Agent header) and determines
whether the user is surfing from a mobile or desktop device. Once the user’s
browser type and CoAP resource type are known, the template lookup module
searches for a matching web template and returns the result to the template ren-
derer. In case no matching template is found, a default template may be used
depending on the user browser.

Apart from the web page contents, a template also specifies whether the proxy
should wait for the CoAP response before rendering the template and returning
the HTTP response to the user. As CoAP response times might be long and unpre-
dictable (order of seconds), the user could experience long delays if the proxy were
to wait on the CoAP response for rendering the web interface. Therefore, templates
that anticipate long response times can indicate to the proxy that they should be
rendered immediately. These templates then retrieve the CoAP response (via the
proxy) once they have been rendered by the browser of the user.

For retrieving CoAP responses, a template may employ Asynchronous
JavaScript And XML (AJAX) techniques to send an AJAX request to the hosting
HTTP URI. The proxy detects that the request is an AJAX request (via the HTTP
XMLHttpRequest header) and skips the web template lookup procedure (the web
browser is detected as a miscellaneous device in this case). Instead the proxy
sends a CoAP request to the target CoAP URI and returns the CoAP response in

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 109

the AJAX response (which might take a long time). The template is then free to
process the AJAX response: e.g. update a text area, a graph, an HTML form, etc.
Additionally, these AJAX techniques can be used to drive an actuator (via PUT or
POST requests), to poll a resource periodically (e.g. while updating a graph), ...
Note that services building on top of the proxy for data access, will not be served
a web interface as their user agent is not recognized as a web browser: e.g. the
user-agent of the urllib HTTP client in Python 3.4 is “Python-urllib/3.4’. In this
case the proxy operates as a standard HTTP-CoAP proxy.

The CoAP client module in the proxy sends requests to the constrained de-
vices for retrieving CoAP responses. It incorporates a cache in order to speed up
response retrieval.

The final module in the design is the response rewriting block. For certain
Content-Types, this block rewrites the CoAP response in order to display it in
the web interface. At the moment, the block only rewrites CoRE link format re-
sponses [9] by replacing web links with links that are handled by the proxy. This
is necessary when discovering CoAP devices and resources via the proxy, as ex-
plained next.

4.3.4 Device mapping, discovery and naming

In the reverse HTTP-CoAP configuration, one might wonder how the device map-
ping module builds the mapping from HTTP to CoAP URIs. As minimal config-
uration is an important requirement, the user cannot be expected to maintain this
mapping. Instead, the proxy retrieves a list of known constrained devices from the
Resource Directory and assigns reverse IPv6 LAN endpoints for each of these de-
vices. In order to make these new endpoints discoverable, the proxy registers the
reverse endpoints in the RD (with the same resources as the constrained endpoint).
Thus the RD contains both the known constrained devices (in a non-default do-
main, which is used by the proxy) and the corresponding reverse endpoints (in the
default domain, which is used by users for discovery). As a result, when users surf
to a reverse endpoint (as discovered in the RD), the proxy is readily able to deter-
mine the target CoAP URI. An example of this mapping and discovery procedure
is presented in the evaluation section.

In the forward HTTP-CoAP configuration, the device mapping is not needed as
the URI mapping is explicit. In this configuration, the user discovers the proxy by
means of a HTTP resource with resource type “core.hc” (as per [8]) in the proxy’s
.well-known/core.

As mentioned earlier, the use of IPv6 and 6LoWPAN can lead to long IPv6
literals in hosting HTTP URIs. To remedy this, the proxy offers a /dns resource for
each constrained device that renders a form where users can set a DNS hostname
for the constrained device. Afterwards, users can use the host name instead of the
IPv6 literal for surfing to the device. Alternatively, the host name could also be
retrieved from a CoAP resource on the constrained device itself (e.g. in case the
device was preprogrammed with a host name).

110 CHAPTER 4

4.4 Evaluation

4.4.1 Evaluation setup

For evaluating the web-based application proxy, extensive tests are performed us-
ing the setup depicted in figure 4.3. The setup consists of two types of constrained
devices: Zolertia Z1s sensor nodes and nodeMCU ESP8266 nodes. There are eight
Z1s that form a 6LoWPAN LLN where one Z1 is connected via SLIP to the Rasp-
berry Pi as the border router. Note that the 6LoWPAN network is a private network
as the IPv6 prefix (fd00::/64) is a unique local prefix. The Z1s are equipped with
a msp430f2617 micro controller (8KB RAM and 92KB flash memory), an IEEE
802.15.4 CC2420 transceiver and run the Contiki OS. The nodeMCUs are IPv4
only devices and are connected to the Raspberry Pi via the Wi-Fi access point.
NodeMCUs are based on the low-power ESP8266 ESP-12E Wi-Fi SoC and have
32KB RAM and 4MB flash memory. Both the Z1s and the nodeMCUs are running
CoAP servers. All constrained devices are configured to register themselves with
the Resource Directory at start-up.

6LoWPAN

fd00::/64
192.168.0.0/24
2001:6a8:1d80:ff::/64

RPI

LAN

Figure 4.3: Evaluation setup: 6LoWPAN Zolertia Z1’s (red) and 802.11 WLAN
nodeMCUs (gray) as constrained devices. Raspberry Pi as application proxy. Red arrows

indicate CoAP exchanges, black arrows HTTP exchanges. Solid lines indicate IPv6
datagrams, dashed lines IPv4.

The Raspberry Pi is a dual-stack device and is part of both the 6LoWPAN
network and the LAN network. The RPI runs the application proxy, as well as
the resource directory and the DNS server for the LAN network. The application
proxy is implemented as part of our CoAP++ framework, which is built on top
of Click Router. The proxy is configured as a reverse proxy for each of the con-
strained devices. As such, the proxy listens for new device registrations in the RD,
allocates reverse endpoints in the IPv6 LAN network, stores the resulting device
mapping and registers the allocated endpoint in the resource directory. As a result,
the user can access constrained devices (6LoWPAN or Wi-Fi) through the reverse
endpoints via the proxy. Finally, the notebook is running Ubuntu 14.04 and the
smart phone is a Google Nexus 5. The round trip time between the Z1’s and the
notebook was measured via ping6 and is on average (µ) 163.1 ms with standard
deviation (σ) 69.4 ms.

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 111

4.4.2 Functional evaluation

In order to discover the constrained devices, the user surfs to the resource direc-
tory in its browser: http://rd.test/ which redirects the user to the rd-lookup/ep web
interface. This HTTP request is handled by the proxy and is translated into a
CoAP request for the local resource directory. The CoRE link format discovery
response is rewritten to a HTML table and this table is rendered in the template for
the core.rd-lookup resource type. Figure 4.4 shows the discovery response in the
mobile Google Chrome browser.

Figure 4.4: Device discovery via the RD endpoint lookup interface

Next, the user taps on the HTTP link of the device of interest which takes the
user to the .well-known/core resource. Here all the resources offered by the device
as well as HTTP links are listed, as shown in figure 4.5.

Finally, the user taps on a resource of interest to interact with. Depending on
the resource type, the interface will be different. Figure 4.6(a) shows a template
that periodically updates a graph (using chartjs.org) of a temperature resource. The
underlying ‘/sensors/temp’ CoAP resource returns plain-text temperature readings.
Figure 4.6(b) shows a template that renders a button for controlling an actuator (in
this case a LED is turned ON and OFF). Tapping the button sends an HTTP POST
request to the resource on the proxy, which is sent to the underlying CoAP resource
by the proxy. Note that the temperature resource is hosted on a 6LoWPAN device,
whereas the actuator resource is hosted on a Wi-Fi device.

112 CHAPTER 4

Figure 4.5: Rendering .well-known/core of a constrained device

4.4.3 Interface responsiveness: load times

The previous section illustrated the user interfaces that can be expected from our
approach. An important performance metric of such user interfaces is the respon-
siveness: e.g. a sluggish interface can ruin the user experience. To qualify the
responsiveness, the load times for two different types of templates are compared:
a simple template, which blocks on the CoAP response before it is rendered, and
an AJAX template, which is rendered immediately and fetches the response after-
wards. In order to measure worst case responsiveness, caching in the CoAP client
has been disabled.

The cumulative distribution functions of the load times are plotted in figure 4.7
(for 100 measurements per function). Notice that the load time2 of the AJAX
template (blue line) is always smaller and more consistent when compared to the
simple template (green line). While the AJAX template has to perform a second

2As browsers typically render a considerable fraction of the UI before the load time has expired, the
load time is considered an upper limit for the UI responsiveness. However, larger average load times
do indicate a decrease in UI responsiveness.

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 113

(a) Plotting temperature (b) Toggling an actuator

Figure 4.6: Different templates are rendered depending on the resource type of the target
CoAP resource: e.g. ibcn.temp and ibcn.light are shown here.

request to fetch the CoAP response (yellow line), it is already rendered in the
browser before this second request is issued. Also note that when the round trip
time to the constrained devices would increase, the load time for the simple tem-
plate would increase (green line would shift to the right) whereas the load time for
the AJAX template remains constant as it does not depend on constrained device
communication. As such, AJAX templates are clearly superior to simple templates
in terms of responsiveness. Finally, the difference between the CoAP (black) and
no template (red) lines shows that the delay introduced by our web interface ren-
dering approach is around 14 ms (their minimums differ 13.9 ms).

4.5 Related work
There are many options for improving user interactions with constrained devices.
In the HTTP-CoAP protocol category, the work of Ludovici et al. [10] presents
a design of a forward cross protocol proxy that supports event-like notifications
through WebSockets as an alternative to HTTP long polling. In contrast to our
work, the proxy of Ludovici et al. does not provide a user interface for web
browser-based users. Additionally, the proxy only operates in a forward config-
uration which requires the user to support the URI format implemented by the
proxy. In [11] Colitti et al. describe both a HTTP-CoAP proxy and a HTTP web
application for visualizing sensor measurements from a wireless sensor network.
While the proposed proxy does implement a reverse proxy model, the web appli-
cation is written as a stand-alone application on top of the HTTP-CoAP proxy. As

114 CHAPTER 4

20 50 100 200 500 1000 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Load time (ms)

Em
pe

ric
ia

l C
D

F
CoAP
HC: No template
HC: AJAX template (2)
HC: AJAX template (1)
HC: Simple template

Figure 4.7: CDFs of load times for different proxy configurations

such, the approach differs from ours where the template rendering is an integral
part of the cross protocol proxy. In [12] Jin et al. present a CoAP service gateway
for automatically creating service mash-ups based on semantic similarity between
related CoAP servers. While CoAP SG includes a HTTP-CoAP proxy that can
return plain-text or JSON HTTP responses, the focus is on aggregating data from
multiple CoAP servers rather than on generating user interfaces. Nevertheless,
the work does prove that proxies on gateways are valuable for implementing extra
functionality.

4.6 Conclusion
This paper presented a number of methods for improving user interactions with
constrained devices. Essential in implementing these methods is the presented
HTTP-CoAP proxy, which renders user interfaces for RESTful resources of con-
strained devices based on web templates. The paper demonstrated this concept
by means of two templates for constrained device resources and one template for
discovery of devices and resources. Additionally, the interface responsiveness and
the delay of our approach was also quantified.

In the future, the authors plan to extend the concept to include transport layer
security (i.e. HTTPS-CoAPs proxy) and to support other functionality than user
interface generation (e.g. data aggregation, data format rewriting).

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 115

Acknowledgment
The research from the DEWI project (www.dewi-project.eu) leading to these re-
sults has received funding from the ARTEMIS Joint Undertaking under grant
agreement n◦621353 and from the agency for Flanders Innovation & Entrepreneur-
ship (VLAIO). The research from the ITEA2 FUSE-IT project (13023) leading to
these results has received funding from the agency for Flanders Innovation & En-
trepreneurship (VLAIO).

116 CHAPTER 4

References
[1] D. Evans. The internet of things: how the next evolution of the internet is

changing everything, 2011. Available from: https://www.cisco.com/c/dam/
en{ }us/about/ac79/docs/innov/IoT{ }IBSG{ }0411FINAL.pdf.

[2] Ericsson Inc. More than 50 Billion Connected Devices - Taking connected
devices to mass market and profitability, 2011. Available from: http://vdna.
be/publications/Wp-50-Billions.Pdf, doi:284 23-3149 Uen.

[3] P. Middleton, T. Tully, J. F. Hines, T. Koslowski, B. Tratz-Ryan, K. F. Brant,
E. Goodness, A. McIntyre, and A. Gupta. Forecast: Internet of Things -
Endpoints and Associated Services, Worldwide, 2015, 2015. Available from:
https://www.gartner.com/doc/3159717/forecast-internet-things--endpoints.

[4] A. Ası́n and D. Gascón. 50 Sensor Applications for a Smarter World: Li-
belium white paper. Libelium, 2012. Available from: http://www.libelium.
com/top{ }50{ }iot{ }sensor{ }applications{ }ranking/.

[5] C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for
Constrained-Node Networks. Technical report, IETF, 2014. Available from:
http://tools.ietf.org/html/rfc7228.

[6] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. De
Poorter, I. Moerman, and P. Demeester. IETF standardization in the field
of the Internet of Things (IoT): a survey. Journal of Sensor and Actuator
Networks, 2(2):235–287, 2013.

[7] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok. CoRE
Resource Directory, 2016. Available from: https://tools.ietf.org/html/
draft-ietf-core-resource-directory-07.

[8] A. P. Castellani, S. Loreto, A. Rahman, T. Fossati, and E. Dijk. Guidelines
for HTTP-to-CoAP Mapping Implementations, 2016. Available from: https:
//tools.ietf.org/html/draft-ietf-core-http-mapping-10.

[9] Z. Shelby. RFC 6690: Constrained RESTful Environments (CoRE) Link For-
mat, 2012. Available from: https://tools.ietf.org/html/rfc6690.

[10] A. Ludovici and A. Calveras. A Proxy Design to Leverage the Intercon-
nection of CoAP Wireless Sensor Networks with Web Applications. Sen-
sors, 15(1):1217–1244, jan 2015. Available from: http://www.mdpi.com/
1424-8220/15/1/1217, doi:10.3390/s150101217.

[11] W. Colitti, K. Steenhaut, N. D. Caro, B. Buta, and V. Dobrota. REST Enabled
Wireless Sensor Networks for Seamless Integration with Web Applications. In
2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor
Systems, pages 867–872, 2011. doi:10.1109/MASS.2011.102.

https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
http://vdna.be/publications/Wp-50-Billions.Pdf
http://vdna.be/publications/Wp-50-Billions.Pdf
https://www.gartner.com/doc/3159717/forecast-internet-things--endpoints
http://www.libelium.com/top{_}50{_}iot{_}sensor{_}applications{_}ranking/
http://www.libelium.com/top{_}50{_}iot{_}sensor{_}applications{_}ranking/
http://tools.ietf.org/html/rfc7228
https://tools.ietf.org/html/draft-ietf-core-resource-directory-07
https://tools.ietf.org/html/draft-ietf-core-resource-directory-07
https://tools.ietf.org/html/draft-ietf-core-http-mapping-10
https://tools.ietf.org/html/draft-ietf-core-http-mapping-10
https://tools.ietf.org/html/rfc6690
http://www.mdpi.com/1424-8220/15/1/1217
http://www.mdpi.com/1424-8220/15/1/1217

IMPROVING USER INTERACTIONS WITH CONSTRAINED DEVICES 117

[12] X. Jin, K. Hur, S. Chun, M. Kim, and K. H. Lee. Automated mashup of CoAP
services on the Internet of Things. IEEE World Forum on Internet of Things,
WF-IoT 2015 - Proceedings, pages 262–267, 2016. doi:10.1109/WF-
IoT.2015.7389063.

5
Integration of heterogeneous devices

and communication models via the
Cloud in the constrained Internet of

Things

While the previous chapter focused on improving the usability from an end user’s
perspective, this chapter looks at increasing the usability of heterogeneous In-
ternet of Things (IoT) technologies from the point of view of a service developer
wanting to combine diverse IoT technologies. This chapter presents a cloud-based
platform to facilitate the integration of heterogeneous constrained IoT devices and
communication models into services by means of a uniform, open standards-based
device abstraction. A three-fold evaluation demonstrates that the platform im-
proves latency, is effective at hiding heterogeneous communication modules and is
straightforward to integrate into services developed by third parties.

? ? ?

Floris Van den Abeele, Jeroen Hoebeke, Ingrid Moerman and
Piet Demeester

Published in International Journal of Distributed Sensor Networks Volume 11
Issue 10, October 2015, special issue on “Leveraging the Internet of Things:
Integration of Sensors and Cloud Computing Systems”.

120 CHAPTER 5

Abstract As the Internet of Things continues to expand in the coming years, the
need for services that span multiple IoT application domains will continue to in-
crease in order to realize the efficiency gains promised by the IoT. Today however,
service developers looking to add value on top of existing IoT systems are faced
with very heterogeneous devices and systems. These systems implement a wide
variety of network connectivity options, protocols (proprietary or standards-based)
and communication methods all of which are unknown to a service developer that
is new to the IoT. Even within one IoT standard, a device typically has multiple op-
tions for communicating with others. In order to alleviate service developers from
these concerns, this paper presents a cloud-based platform for integrating hetero-
geneous constrained IoT devices and communication models into services. Our
evaluation shows that the impact of our approach on the operation of constrained
devices is minimal while providing a tangible benefit in service integration of low-
resource IoT devices. A proof of concept demonstrates the latter by means of a
control and management dashboard for constrained devices that was implemented
on top of the presented platform. The results of our work enable service develop-
ers to more easily implement and deploy services that span a wide variety of IoT
application domains.

5.1 Introduction
In the coming years more and more everyday objects are expected to be intercon-
nected to the Internet, which will lead to a vast expansion of the Internet as we
know it today. White papers released by Ericsson [1] and Cisco [2] estimate that
the Internet will grow tenfold in the near future, with up to 50 billion connected
devices by 2020. A considerable amount of these new Internet citizens will be
so-called constrained devices. These are small, embedded and low-cost devices
that are purposefully designed for executing specific tasks such as monitoring the
physical environment. For performing their tasks, they are often fitted with a mi-
crocontroller, sensors, actuators, a wireless transceiver and an energy source. Due
to their low cost, these devices are constrained in terms of processing power, com-
munication capabilities and energy budget. The widespread deployment and use
of such constrained devices across a range of application domains (e.g. smart city,
building control, logistics, transportation, etc.) is expected to generate significant
efficiency gains as well as drive new business. The combined effect of which is
estimated to create 14.4 trillion USD in net value in the next decade [3].

Due to the IoT spanning such a wide range of application domains, there is a
diversity of devices, protocols, network connectivity methods and resulting appli-
cation models on the market today. Within these IoT solutions some are legacy
systems that rely on proprietary technology (sometimes suitably referred to as
the Intranet of Things [4]), while others adopt more open IoT standards such as
MQTT [5] and the IETF protocol stack for (constrained) IoT devices [6]. This
diversity often results in the vertical silos seen today and hinders development
of value-added services that use these low-resource IoT devices [7]. For example,

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 121

in [8] the authors state that the logistics sector should move away from proprietary,
stand-alone solutions that are not connected to the rest of the IoT to new platforms
that combine various existing hardware and software solutions for end-to-end in-
tegrity control of supply chains. But even within one (standardized) protocol suite
there are a number of different communication and application design strategies
available which are often tightly tied to the underlying use case. For example
in logistics, separate communication strategies are necessary for battery-powered
tracker devices (which are typically only intermittently connected to the Internet)
and trackers with an abundant energy source (which can afford network connec-
tivity for longer periods of time). Forcing IoT users (e.g. service developers, con-
strained devices) to support these different types of diversity, is unfeasible as they
typically lack the proper resources (e.g. know-how, time, processing resources)
to handle the specifics of the underlying constrained devices and networks. The
goal of this work is to hide this wide range of diverse technologies, protocols and
applications models from IoT users.

As the demand for low-resource IoT devices is expected to rise, this problem is
only expected to worsen in the future. Thus, it will become necessary to improve
the integration of a wide variety of constrained devices in the IoT. Cloud comput-
ing is a suitable method, due to its availability, elasticity (improving scalability)
and low-cost of computing resources [9]. Such a cloud-based software system
is interesting because it can support different types of low-resource IoT devices
by means of an adaptation layer and offer a uniform device abstraction that hides
the diversity in devices, protocols, network connectivity methods and application
models from IoT users. By offering well-known interfaces via open standards
protocols (RESTful and CoAP in this work) for this device abstraction, the later
becomes significantly easier to integrate than the underlying constrained devices.
The resulting design greatly improves integration of and service development for
constrained IoT devices, while neither burdening the constrained IoT devices nor
the service developers.

Our contributions in this paper are as follows. First we design, implement and
evaluate a cloud-based software architecture that enables the integration of hetero-
geneous low-resource devices in the Internet and more importantly into services.
By offering a uniform CoAP interface on top of a virtual device abstraction, our
approach is able to support highly heterogeneous devices as well as provide inter-
operability with legacy IoT devices that were built using proprietary technology.
Secondly, we illustrate the feasibility of our developed architecture with a real-
life deployment consisting out of constrained devices that embrace open standards
and one representative example of a proprietary low-resource IoT device. The
proof-of-concept demonstrates that the developed architecture supports a number
of different communication models.

The remainder of this paper is structured as follows. First, a case study is
presented in the following section to highlight some of the issues faced when de-
veloping applications on top of two industrial IoT systems. Section 5.3 details the
research questions addressed by this paper. The next section introduces supporting
technologies and other background information used in the remainder of this pa-

122 CHAPTER 5

per. Section 5.5 presents our approach for integrating heterogeneity devices in the
constrained Internet of Things. Our proposed solution is evaluated in section 5.6
in a wireless sensor network setup and via a real-life proof of concept. Section 5.7
presents the literature related to our work. Finally, the paper is concluded with
possible topics for future work and our conclusions in section 5.8.

5.2 Case study: logistics and transport

The case study presented here considers harbor cranes and freight containers owned
by different parties. The harbor cranes are tasked with (un)loading containers from
cargo ships. Both the cranes and the containers are equipped with a GPS-enabled
tracking device, each of which belongs to a different entity (i.e. vendors A and B).
The trackers from vendors A and B each report to their separate back-end systems,
where the vendor’s customers can follow up on the status of their cranes or con-
tainer’s (contents) via a vendor-specific web portal (see figure 5.1). The trackers
are connected to the Internet via a GPRS connection.

Internet

Container tracking
vertical

Portal A Portal B

Crane tracking
vertical

Figure 5.1: Isolated vertical platforms hinder cross-vendor service delivery

Due to the container’s mobility its tracker is battery-powered, whereas the
crane’s tracker is powered via the crane’s alternator. Subsequently, the container’s
tracker is in sleep mode most of the time to conserve energy. In order to conserve
the limited energy of the container’s tracker even further, vendor B wants to update
the location of its container by using the location information supplied by the crane
when the container is picked up. This way the container’s tracker avoids acquiring
a GPS and a GPRS signal and transmitting its position, thus reducing its energy

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 123

expenditure. However, both vendors only offer a web portal to their customers and
there is no other interface for retrieving data from the trackers. Thus, vendors are
forced to either rely on expensive and error-prone human intervention to interface
between both systems or to try and build on top of interfaces designed for user
interaction.

Situations such as these are common in today’s Internet of Things, with its
abundance of isolated vertical platforms (e.g. in building management systems
as per [10]). The costs of deploying and maintaining all the individual systems
in such verticals should not be underestimated as the re-usability of components
between verticals is typically low. As vendors start to expand their products into
other IoT application domains (each with its own heterogeneous set of properties)
and as IoT applications start to span across multiple domains (where everything
will interact more and more with each other), this approach of building purpose-
specific vertical silos will rapidly become inefficient and expensive.

5.3 Problem statement and research goals

Internet

Building AutomationTransport and
Logistics

Smart City

Service BService A Service C Service developers face
the problem to interface
with domain-specific and
widely different
• Communication

networks
• Application protocols
• Application models
• Standards
• Data formats
• …

Vertical
BACnet, KNX,
Zigbee, IP, ...

Push vs pull
models

Fixed vs cellular
links

Figure 5.2: Problem statement: As each domain of the IoT comes with its own set of IoT
devices, protocols, standards, data formats and connectivity options, service providers are

forced to integrate a multitude of different technologies when developing cross-domain
services.

Before the problem statement is formulated, a number of examples of het-
erogeneity are presented here to illustrate the problems addressed by this work.
Due to the wide range of environments where the IoT is considered to be em-
ployed [11], a number of different network connectivity technologies will be used
depending on the specific use case. For some applications, devices will be on a
tight energy budget (e.g. battery-powered or energy harvesting devices) which

124 CHAPTER 5

might mean conserving energy by sleeping and remaining unreachable for long
periods of times. In other applications mobility, remoteness or financial cost might
lead to devices with an intermittently-connected link to the Internet. And in other
cases still, devices might be mains-powered and have a near always-on connec-
tion to the Internet. Furthermore, some low-resource devices might not be able to
support certain transport protocols (e.g. TCP) and might have to follow a differ-
ent approach (e.g. UDP or SMS). While in all these cases devices are accessible
via a communications link, the properties and behaviour of this link are not al-
ways fully comprehended by service developers. Consider as an example a smart
freight shipping container. As these containers are transported (often over long
journeys), their Internet connectivity will vary: e.g. there will be times when they
are unreachable and when they are reachable, their Internet end point will change
frequently due to their mobility.

Another cause of heterogeneity is the application communication model cho-
sen by low-resource IoT devices. Note that this choice is often influenced by the
available network connectivity as discussed in the previous paragraph. Some de-
vices might rely on a ”pull model“, where the service is expected to initiate all
interactions to and from the devices. Other devices, due to network constraints,
might employ a “push” approach where devices periodically send data to a data
store and sleep for the majority of the time. In this case, push data is often aggre-
gated in order to increase the communication efficiency. In other cases, devices
might employ a mix of push and pull: for example critical events and monitoring
data is sent immediately (e.g. for generating alerts), non-critical measurements are
aggregated and pushed together and configuration and management of the devices
takes places via a pull model (i.e. a management service might send configuration
data to the IoT device directly).

Another fundamental cause of diversity is whether the IoT device employs
proprietary or one of the many standards-compliant application protocols and data
formats available today. While proprietary purpose-built technology will in some
cases outperform standards-compliant technology, it also has a number of down-
sides: of which the most important for the discussion here is that they are diffi-
cult to integrate for third parties. Furthermore, proprietary protocols often lead
to higher development and maintenance costs and are less future-proof than open
standards. For our smart freight container example, this is also what we see on
today’s market [8]. There are a number of players that offer tracking services for
freight containers, but their systems are using private communication networks, in-
house data standards and typically only offer high-level access to data (e.g. via a
web-based dashboard for tracking). This greatly impedes other players to integrate
smart containers into their products. However, even when relying on standards-
compliant technology, there are many different standards available today. Most of
these are popular in specific domains, such as BACnet in building automation, Zig-
Bee in home automation and SEP2.0 in smart metering. Thus, services that want
to encompass multiple application domains are forced to interface with a mix of
proprietary and domain-specific standards, technologies and data formats.

A final source of heterogeneity that is addressed by this work, which is re-

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 125

lated to the diversity of application protocols and data formats, is the wide variety
of supporting services for interacting with constrained devices. Every technology
comes with its own mechanisms for device and data source discovery, its own
security concepts and methods (if available at all), its own notification service,
etc. As a result there is little reuse between these technologies, which further im-
pedes cross-technology integrations. Moving to open standards will allow using
standard-compliant approaches for such supporting services and will provide uni-
form mechanisms for these services to third party service developers. While the
list of heterogeneity presented here is not meant to be exhaustive it does present
a clear overview of the types of heterogeneity that this paper considers. A com-
prehensive overview of the different types of heterogeneity commonly found in
wireless sensor networks is presented in [12].

Parties looking to offer new services in this mix of connectivity, application
models, standards and protocols will quickly find themselves forced to integrate
a multitude of different technologies. Given the previous paragraphs and their
conceptual representation in figure 5.2, it becomes clear that supporting all these
different types of heterogeneity cannot be expected from service developers. Fur-
thermore, constrained devices are unable to adapt to the different service providers
due to their low resources. These devices will typically implement one of many
instances of heterogeneous technologies presented here, depending on availability
of resources, communication, energy and application requirements. While cloud-
based platforms are a good match for complementing constrained low-resource
devices [9], a gap analysis of existing IoT platforms [13] shows that support for
heterogeneous and constrained devices in such platforms is still lacking. One of
the problems identified by Mineraud et al. [13] is that most IoT platforms assume
constrained devices to support HTTP, which - given the heterogeneous nature of
these devices - is definitely not always the case.

In this paper our goal is to tackle the heterogeneity presented here by focusing
on a standards-compatible cloud-based software system that can integrate with a
multitude of different technologies and protocols with a focus on low-resource IoT
devices. Our research aims to answer the following questions:

• How can standards-based IoT technology be combined with cloud comput-
ing to handle the diversity of underlying low-resource IoT devices?

• How can such a cloud computing approach present a uniform interface to
third party developers given the different sources of heterogeneity?

• What types of diversity in protocols and communication models can such a
cloud-based approach handle?

• What is the impact of this fusion of cloud and IoT on the communication
with low-resource IoT devices? Can this communication be made more
efficient?

• How can we further exploit the power of cloud computing to support inter-
actions from third parties with IoT devices?

126 CHAPTER 5

5.4 Background: Embedded web services via CoAP
The diverse environments in which IoT devices have to operate, has led to a mix
of proprietary and standard-based protocols and different application models that
are deployed in today’s Internet of Things. While there are a number of standards
relevant for the Internet of Things [14], this paper will build on the standardization
as per the IETF protocol stack for constrained devices [6] [15] and more specifi-
cally on the embedded RESTful approach followed by the Constrained Application
Protocol (CoAP) [16] [17]. CoAP was chosen because it is lightweight yet power-
ful protocol that is an ideal candidate for integrating constrained devices into the
cloud.

CoAP client CoAP server

GET /.well‐known/core

2.05 "Content"
</s/t>;rt="TemperatureC";if="sensor“,

</s/l>;rt="LightLux";if="sensor"

GET /s/t

2.05 “Content”
23.5C

Figure 5.3: A typical request/response exchange between a CoAP client and server

CoAP is a specialized web transfer protocol for use with constrained devices
and networks. In CoAP, every physical object (i.e. thing) hosts multiple resources
that represent data gathered from sensors or actions available to actuators. Every
resource is accessible via a unique uniform resource identifier (URI) and can be in-
teracted with via the GET, PUT, POST and DELETE REST methods. CoAP can be
considered as a highly optimized version of HTTP/1.1 for use in the low-resource
embedded domain. Main differences with HTTP include the use of connectionless
UDP, support for multicast-based group communication, built-in discovery sup-
port, simplified header parsing and a publish/subscribe extension [18]. Daniel et
al. present a detailed comparison between CoAP, HTTP and SPDY in [19].

A typical CoAP exchange is shown in figure 5.3. The CoAP RFC specifies
the .well-known/core resource as the entry point for resource discovery. In this
example the CoAP server responds that it hosts a temperature and light inten-
sity resource. The server then responds to the client’s temperature resource re-
quest. CoAP requests and responses can be sent in Confirmable (CON) and Non-
confirmable (NON) CoAP messages. As the name suggests CON messages expect
the receiver to acknowledge the reception of the message via an acknowledge-
ment (ACK). Most of the time, the response to the client’s request is piggy-backed

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 127

on top of this ACK.
As mentioned, CoAP provides a publish/subscribe extension in the form of the

CoAP Observe mechanism [18]. When a client is observing a resource, the server
promises to send new representations of the resource to the client following a best-
effort strategy. This frees the client from having to explicitly poll the resource for
changes. As observe notifications are regular CoAP responses with the Observe
option set, they can be sent as CON and NON messages.

In the CoAP ecosystem there are a number of other works relevant to our dis-
cussion here. A CoRE Resource Directory [20] facilitates the discovery of CoAP
devices and resources in cases where direct discovery is not practical due to sleep-
ing nodes, disperse networks or networks where multicast is inefficient. To this
end, a resource directory hosts descriptions of resources that are available on other
CoAP servers. Clients can perform lookups within a resource directory via the
web interface specified in the IETF Internet draft.

A second relevant CoAP mechanism is that of a CoRE Mirror Server [21].
Such a server mirrors the resources of a constrained devices, thereby enabling
these devices to go into sleep mode and to disconnect their network link in order
to save resources. [21] defines the web interfaces for registering resources, send-
ing resource updates, querying for mirrored resources and retrieving updates of
mirrored resources. A mirror server can also be extended to mirror resources on
behalf of mobile devices, which frequently change their Internet endpoint due to
their mobility. An example of a mirror server is shown in figure 5.4.

Sleeping endpoints

Update

&

Sleep

Mirror SEP
resources

MS

Clients
Read

&
Write

PUT ms/0/t

GET ms/0/t

Figure 5.4: CoAP mirror server: clients and sleeping endpoints can communicate in an
asynchronous fashion

Sleeping endpoint (bottom of the figure) start by registering their to-be mir-
rored resources with the mirror server via a POST request (not shown in the figure).
From then on, sleeping endpoints (bottom of the figure) operate as CoAP clients.
They update their resources on the mirror server via CoAP PUT requests and can

128 CHAPTER 5

query the mirror server for updates to their resources via a CoAP POST request.
After a sleeping endpoint has retrieved a list of changed resources (via the POST
request), it can choose to process the changes by retrieving every updated resource
via a CoAP GET request. The “Client Operation” interface of the mirror server
enables clients (top of the figure) to retrieve and change the mirrored resources.
Note that clients must know and implement this Client operation interface.

5.5 Cloud platform for supporting heterogeneous de-
vices and communication models

A high-level overview of our approach is presented in figure 5.5. Low-resource
IoT devices with various forms of heterogeneity are shown at the bottom. These
employ diverse hardware, protocols and communication models. For each of these
devices, our cloud-based platform hosts a virtual counterpart that is made available
as a dedicated IPv6 endpoint (i.e. the virtual device). Clients interact only with
the virtual device and the cloud takes care of mapping these interactions to the
particular constrained device. In our approach the dedicated IPv6 endpoint hosts
both a CoAP and a DTLS server and therefore all interactions between a client and
a virtual device run over CoAP.

Cloud

Client

D Heterogeneous
devices

Virtual
devices

IPv6 VD

Figure 5.5: Virtual devices in the cloud represent their real heterogeneous counterparts

In effect, our approach follows the Sensor as a Service (SenaaS) paradigm
where clients interact with a virtual cloud-based counterpart of a real-life sensor
or device. The main benefit of SenaaS is that a virtual device has significantly
more resources at its disposal than its constrained counterpart and is therefore
not hindered by the constraints common to low-resource devices. For example,
a virtual device is always available whereas a constrained device might be asleep
or temporarily unreachable (e.g. due to mobility). Furthermore, by deploying
our platform in the cloud it can support on-demand dimensioning of computing
resources when the load on the platform fluctuates. This allows to scale efficiently
as the size of the deployment grows and avoids under- and over-dimensioning
computing capacity. Finally, maintaining the platform’s computing infrastructure
is outsourced to a specialized external party in this case.

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 129

The use of CoAP leads to a lightweight solution where a virtual device can be
used by both conventional services as well as by the low-resource devices them-
selves. The straightforward mapping between CoAP and HTTP has the bene-
fit that virtual devices can easily be integrated into existing RESTful web ser-
vices. CoAP also provides built-in support for response caching. The result is a
resource-oriented architecture that facilitates the integration of constrained devices
into third-party services and applications.

To realize this architecture, we have split our cloud-based platform into two
layers. The first layer offers a uniform interface to the underlying constrained
devices by means of virtual devices. The second layer handles the heterogeneity
in constrained devices and applications models. Both of these layers are presented
in the following two subsections.

ABSTRACTION LAYER

ACCESS LAYER

CONSTRAINED
DEVICES

Push
aggregation

Config via MS &
data push via
aggregation

Proprietary

Proprietary
application

E.g.
TCP/IP/GPRS

Mirror server
model

App

UDP/IP

Mapping
prop. – CoAP

Mirror
Server

Resource
directory L1

External

Mirror server

HTTP‐CoAP
proxy

Direct config &
data access

Direct config &
data push via
aggregation

CoAP

App

UDP/IP

CoAP

App

UDP/IP

CoAP

App

UDP/IP

CoAP

Sleeping/always on Sleeping/always on

Abstraction
Manager

Resource
directory L2

IPv6 IPv6
pool

Incoming CoAP requests
(for data access or configuration)Incoming HTTP requests

Local storage

IPv4,IPv6,SMS,…

CoAP/IPv6 to
virtual devices

Aggregated data

Data access, push
changes upwards,
configuration, etc.

CoAP resource adapters CoAP IPv4/IPv6
forward proxy

Incoming IPv4 CoAP requests

SleepingVertical

CoAP server abstraction

Device discovery

(Reverse) access
mapper

Fixed/mobile
NAT

VIRTUAL
DOMAIN

Figure 5.6: The access and abstraction layers of the design enable uniform access to
heterogeneous constrained IoT devices.

5.5.1 The access layer: providing access to heterogeneous de-
vices and communication models

The access layer is closest to the constrained devices and is responsible for com-
munication to and from these heterogeneous devices. In some cases the access
layer also stores the data provided by the constrained devices. As can be seen
from figure 5.6, access is provided to constrained devices that employ a number of

130 CHAPTER 5

heterogeneous communication models. At the heart of this layer is the access map-
per component, this module maps the uniform representation from the abstraction
layer to the particular implementation of the constrained device and vice versa. To
this end, the access mapper translates requests for CoAP resources hosted by the
device abstraction to device-specific actions. In the next few paragraphs we will
discuss specific instances of this mapping for the different communication models
that are shown at the bottom of figure 5.6.

The first communication model is that of the mirror server model that was al-
ready introduced in section 5.4. For constrained devices hosted on mirror servers,
the access layer translates requests for virtual devices to requests destined to the
corresponding mirror server. It does this by taking the URI path of the incom-
ing request and adding it to the mirror server URI handle of the device. E.g. a
request for coap://[2001:6a8:1d80:600::21]/s/t on the virtual device is translated
to coap://ms.example.com/ms/4/st on the mirror server. Requesting the .well-
known/core discovery resource will trigger a request to the device’s handler re-
source on the mirror server (i.e. ms/X). For .well-known/core responses, the access
mapper will remove all occurrences of the device’s mirror server URI-path handle
in the response from the mirror server (otherwise clients would see the s/t resource
as ms/4/s/t). Note that the mirror server itself can be running alongside the cloud
platform, but that it can also be hosted externally (e.g. on-site for reduced latency).

In the direct configuration and data access model, the constrained device hosts
a plain CoAP server. In this case, the access mapper operates as a standard CoAP
reverse proxy [16] where requests for the virtual device are mapped to the CoAP
server on the constrained device. The constrained device can be a mobile device,
where its IP endpoint changes as the device’s location changes. Also, a constrained
device might be behind NAT and/or a stateful firewall. In both cases, access to the
device is typically restricted to those parties with whom the device maintains ac-
tive communication. In case of NAT, the transport layer mapping at the NAT box
is expected to be volatile as well. To this end the access layer allows updating the
mapping of a device via the “/registerendpoint” CoAP resource. This way the IP
endpoint of a device is kept up to date and any state in intermediaries is kept alive.
One optimization supported by our reverse proxy is combining multiple CoAP
observe relationships into one relationship. If N clients are observing the same
resource on the virtual device, then the mapper will maintain only one observe re-
lationship with the constrained device. Consequently the constrained device has to
send only one notification instead of N notifications per resource change, thereby
reducing its load and energy consumption.

Communication models three and four are hybrid models where data (i.e. orig-
inating from the device) and configuration changes (i.e. destined to the device) are
handled via different methods. Both models differ from the mirror server model in
that they push data for multiple resources in a single request as opposed to pushing
data for a single resource per request (as is the case in the mirror server model).
The push aggregation module in the access layer is responsible for splitting the in-
coming aggregated data into multiple requests (i.e. one per resource) to the mirror
server. This can lead to considerable energy savings for the constrained device as

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 131

the total number of requests is reduced. The difference between these two mod-
els, is the method they use for configuration changes. One model allows hosting
a CoAP server that enables direct configuration changes, whereas the other model
relies on a mirror server for configuration.

For the proprietary communication model there are a number of different map-
ping strategies available, the exact choice of which will be highly dependent the
proprietary technology that is being mapped. There are however two straightfor-
ward ways to provide a mapping to constrained devices that are operating inside a
vertical. In the first method the constrained devices in a vertical are represented as
CoAP clients, while in the second they are represented as CoAP servers. In both
cases the vertical defines its own set of resources that provide a suitable RESTful
interface for interacting with the proprietary constrained device. In case of the
CoAP client option, the vertical can register its devices on a mirror server and all
data and configuration changes are handled via the mirror server. The evaluation
section presents an example of this approach for a container tracking vertical. In
the CoAP server case, the vertical can sometimes act as a cross-protocol proxy.

The final component is the access layer resource directory where mirror servers
and direct access CoAP servers register themselves so that they can be discovered
by the abstraction manager. The abstraction layer uses this information to in-
stantiate the CoAP server abstractions (i.e. one per constrained device) and the
corresponding access mapper instances. The next subsection looks at how this is
realized in the abstraction layer.

802.15.4
WSN

6LoWPAN/RPL
border routerCoAP client

Sleeping (push)

Always on (pull)

ABSTRACTION LAYER

ACCESS LAYER 2001:6f8:202:85cc::/64

A) POST
coap://[2001:6a8:1d80:600::24]/toggle

B) OBSERVE
coap://[2001:6a8:1d80:600::22]/s/t
coap://[2001:6a8:1d80:600::24]/s/t

MS

Figure 5.7: Two Raspberry Pi’s and an 802.15.4 wireless sensor network operating
6LoWPAN form the evaluation setup for our cloud platform

5.5.2 The abstraction layer: a homogeneous RESTful interface
for constrained devices

The abstraction layer is responsible for providing a homogeneous interface to de-
vices that implement the different communication models mentioned in the previ-
ous paragraphs. Furthermore, it also allows to extend this device abstraction with
new functionality. Finally, the layer provides proxy services to IPv4 and HTTP for

132 CHAPTER 5

broadening the interfacing possibilities with the device abstraction. The layer is
part of the virtual domain, where also the device abstractions reside.

In term of the device abstraction, we chose to represent every constrained de-
vice as a virtual device that implements a CoAP server with one or more resources.
This virtual device is hosted as a dedicated IPv6 endpoint by allocating an IPv6
address from an IPv6 subnet that is routed to the cloud. While this abstraction
is hosted at the network layer, our abstraction layer will only process CoAP (and
DTLS) traffic for virtual devices, other types of traffic are not processed. One ben-
efit of using a network-layer abstraction, is that multiple IPv6 subnets and IPv6
routing can be used for distributing device abstractions over a number of different
cloud systems in order to improve scalability. The result is that every constrained
device is made available as an open standards-compliant (virtual) CoAP server re-
gardless of the underlying communication model and protocols of the device. To
this end, the L2 resource directory contains web links to all virtual devices and
their resources.

On top of the server abstraction is a block that enables to extend the function-
ality provided by the server abstraction on both the transport layer and the appli-
cation layer (i.e. on the level of CoAP resources). The “CoAP resource adapters”
module allows a managing party to instantiate chains of plugin-like functional
blocks that extend the server abstraction in a desired way. This concept has been
presented in previous work [22] and has been shown to significantly reduce the
communication overhead of DTLS in IP-based wireless sensor networks [23]. In
this work we reuse the concept of adapter chains for realizing the security model
of our platform as explained in the next paragraph. It is also used to implement a
cache for CoAP responses, which is running on top of memcached.

In terms of the security model, the cloud platform is considered as a trusted
entity by constrained devices. Policies are defined in the cloud platform to del-
egate (parts of) this trust to clients. Clients of a virtual device are authenticated
by the credentials they provide during the DTLS handshake. Currently the plat-
form supports pre-shared keys (useful for constrained clients), raw public keys
and standard X.509 certificates issued by a party trusted by the policy (see later).
The server abstraction is authenticated to the client via the same types of creden-
tials. The resource adapters block provides a DTLS adapter type for authenticating
clients and handling the DTLS protocol, as per [23]. It also provides an adapter
type that handles authorization. This is accomplished by allowing administrators
to define policies based on the credentials of the user, the destination of the re-
quest and the desired operation (i.e. CoAP method and targeted CoAP resource).
The authorization adapter processes the output of the DTLS adapter (i.e. plain text
CoAP requests) and drops all requests that do not adhere to the defined policy.

The final two components enable access to the IPv6 CoAP server abstraction
from HTTP clients and from IPv4-only CoAP clients. As mentioned CoAP is
designed to interface easily with HTTP, so mapping HTTP and CoAP messages
is a straightforward process for the HTTP/CoAP proxy. Furthermore, our device
abstraction enables us to host a HTTP server using the IPv6 address of the virtual
device. Therefore, the URI-mapping mechanism is very simple (i.e. change the

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 133

scheme from http to coap) and the URI-mapping issues raised by [24] are not
applicable in this case. Finally, our proof of concept deployment learned that
not all clients have IPv6 Internet access. More specifically, GPRS-based Internet
access is often restricted to the IPv4 Internet. To address this issue, the platform
provides an IPv4/IPv6 forward CoAP proxy where the target (IPv6) CoAP URI is
encoded in a “Proxy-URI” CoAP option [16].

5.5.3 Machine to Machine communications
An important application for IoT platforms is machine to machine communica-
tions. One common issue in M2M is device management: i.e. tracking and con-
figuring devices that are deployed in the field. In 2014, the Open Mobile Al-
liance (OMA) has defined a set of standards for device management in M2M:
Lightweight M2M1. LWM2M has adopted CoAP and its RESTful mechanisms as
the protocol of choice for interfacing with devices. They also mandate the use of
DTLS for security and a resource directory for discovery of devices. While the
platform presented here doesn’t implement the standardized OMA interfaces (i.e.
CoAP resources) for bootstrapping, management and services, adding them would
be straightforward as both our platform and LWM2M share the same building
blocks.

One typical characteristic of M2M systems is the use of SMS services for com-
munications, as opposed to IP-based communications. The CoAP protocol was
designed with a range of low-power and lossy network types in mind [25] and an
adaptation of CoAP to SMS transport is presented in [26]. Thus, the same applica-
tion protocol can be used for interfacing with both SMS and IP-based constrained
devices. Furthermore, the design of our platform can easily be extended with SMS
functionality in both the abstraction and the access layers. Virtual devices could be
allocated a unique mobile number, which would make them accessible to machines
that are restricted to SMS communications. Finally, adding an SMS gateway in the
access layer would allow virtual devices to map to SMS-only constrained devices.

5.6 Evaluation
We have evaluated our platform via three methods, two of which provide a quan-
titative evaluation about specific aspects of the platform while the third is a quali-
tative evaluation in the form of a proof of concept.

The setup for the quantitative evaluations is shown in figure 5.7. The client
is a Raspberry Pi model B connected natively to the IPv6 Internet via a commer-
cial Belgian ISP. The cloud platform is running on a virtual machine hosted at our
University’s data center, where Internet peering is provided by Belnet2. The wire-
less sensor network consists out of three Zolertia Z1 nodes, which are equipped

1http://openmobilealliance.org/about-oma/work-program/m2m-enablers/
2Belnet is a Belgian Internet provider for educational institutions, research centers, scientific insti-

tutes and government services

http://openmobilealliance.org/about-oma/work-program/m2m-enablers/

134 CHAPTER 5

with TI’s 16 bit msp430 microcontrollers (8 KB RAM and 128 KB ROM) and a
CC2420 802.15.4 radio. According to IETF terminology, these devices fall under
the “Class 1” category [27]. These are devices that are constrained in code space
and processing capabilities, in that they cannot easily communicate with other
Internet nodes employing a full protocol stack such as using HTTP, TLS and re-
lated security protocols and XML-based data representations. However, they have
enough power to use a protocol stack specifically designed for constrained nodes
(such as CoAP over UDP) and participate in meaningful interactions without the
help of a gateway node.

All Zolertia nodes are running the IETF stack for constrained devices available
in contiki. The two sensor nodes on the right of the figure are battery-powered and
employ the ContikiMAC MAC and Radio Duty Cycling protocol. The channel
check frequency of ContikiMAC was lowered to 4 Hz to conserve energy. Routing
inside the 6LoWPAN network is enabled by the RPL routing protocol. One Zoler-
tia node is configured with the direct access model (pull) and one with the mirror
server model (push). The third sensor node acts as a 6LoWPAN and RPL border
router and is connected to a Raspberry Pi model 2. This Raspberry Pi is connected
to the IPv6 Internet via a SixXS.net tunnel (on the Belgian Easynet PoP). The
2001:6f8:202:85cc::/64 subnet is routed over this tunnel and distributed inside the
6LoWPAN network.

5.6.1 Virtual device abstraction: scalability and latency
While routing all traffic to the cloud-based virtual device has many benefits (the
most important being availability of computing resources), it may also introduce
some undesirable downsides. One obvious issue is that of scalability. As the
number of IoT devices continues to increase in the coming years, the volume and
velocity of IoT traffic is expected to grow exponentially [28]. However, this issue
can be addressed by relying on the flexibility provided by our network layer ab-
straction in terms of allocating IPv6 addresses to virtual devices and in terms of
configuring routing tables to distribute traffic to the machines running our cloud
platform. Via dynamic routing tables we can move virtual devices from machines
that experience a high load, to newly allocated computing resources. The reverse
mechanism allows to scale down when the load decreases, thus realizing the re-
source elasticity common to cloud computing. However, this is still future work.

Another potential problem is latency: i.e. how does routing traffic via the vir-
tual device abstraction impact latency between a client and a constrained device?
In a lot of cases our approach can actually provide latency improvements by e.g.
serving content from a cache. However, not all requests can be satisfied from the
cache, activating an actuator is a prime example of this. What is the impact on
latency in this case? In order to quantify this impact, we have conducted response
time measurements using the setup from figure 5.7. Confirmable CoAP POST re-
quests, that toggle a LED on the Zolertia sensor node, were sent for measuring
the round trip time (RTT) from client to constrained device. Only the always-on
node (with RDC) was used in this experiment. Over 8000 CoAP requests were

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 135

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

CON CoAP POST RTT (ms)

Em
pe

ric
ia

l C
D

F
Cloud
End-to-end

Figure 5.8: Cumulative distribution function of response times for confirmable CoAP
POST requests

sent sequentially for the following two configurations:

1. Cloud: the client sends the POST request to the virtual device in the cloud,
where it is translated to a POST request to the corresponding constrained
device. The response follows the reverse path.

2. End-to-end: the client sends the POST request to the constrained device
directly (not shown in figure 5.7).

A CDF of the response times is shown in figure 5.8. We can see that the differ-
ences between the two configurations are small and negligible for most use cases.
This is because most of the response time is spent on sending the request over the
last wireless hop from the border router to the sensor node (due to the RDC). For
the end-to-end configuration, the average RTT between the client and the 6LoW-
PAN router was only 29.8 ms (with a standard deviation σ of 5.6 ms). For the
cloud configuration, the average RTT between client and cloud was 22.5 ms (σ
= 5.1 ms) and between cloud and 6LoWPAN router was 17.3 ms (σ = 1.5 ms).
For the end-to-end configuration the minimum CoAP POST RTT measured was
74.7 ms, for the cloud configuration it was 89.7 ms; i.e. a difference of 15.0 ms.
However, considering the fact that for the cloud configuration more than 90% of
the measured response times were longer than 482.0 ms (and 99.9% were longer

136 CHAPTER 5

than 100 ms), we can see that the impact of the lossy 802.15.4 network in combi-
nation with radio duty cycling on latency is much higher than hosting our virtual
device in the cloud.

5.6.2 Communication models: push vs pull
In this subsection the mirror server and direct access communication models, in-
troduced in the previous section, are compared in terms of energy consumption.
For these experiments the setup from figure 5.7 is also used. There are two config-
urations for each of the models: one where the data communication period is 10
seconds and one where this period is 30 seconds. In all experiments the Raspberry
Pi CoAP client observes a temperature resource on the virtual CoAP server. The
abstraction of the sleeping device is hosted at 2001:6a8:1d80:600::22, whereas
2001:6a8:1d80:600::24 corresponds to the direct access device. When the sleep-
ing device is not engaged in an active CoAP exchange it switches its radio into
sleep mode until its next transmission, otherwise it employs RDC. The always-on
device continuously employs RDC.

When the CoAP client observes the temperature resource on the virtual device,
the cloud platform will observe the corresponding resource on either the mirror
server or the constrained device itself. The sleeping device is configured to update
the mirror server every 10 or 30 seconds via CoAP PUT requests (push model).
Every twentieth PUT request is a confirmable CoAP message, whereas the other
requests are non-confirmable messages with the CoAP No-Response option3. The
always-on device is configured to update its resource every 10 or 30 seconds and
to send one confirmable notification for every twenty notifications (pull model).
The other nineteen notifications are sent as non-confirmable messages4. The re-
sulting four configurations are named PUSH10, PUSH30, PULL10 and PULL30
respectively. Every time the client receives a notification it estimates the energy
consumption of the constrained device for transmitting the data that triggered the
notification from Energest data that is retrieved from the constrained device [29].
Energest values are read from a serial connection with the constrained node that is
running over a TCP connection to a serial forwarder that is attached to the UART0
line of the sensor node. More than 400 measurements were collected per configu-
ration.

The box plots of total energy usage in figure 5.9 show that in general the push
model consumes less energy than the pull model for this experimental setup. This
is due to the fact that for the push model the radio can be kept in sleep mode for
longer periods of time per transmission. The stacked bar plot confirms this for the
“median energy usage” case, where it is clear that the energy spent in the reception
category for the pull models is significantly higher than in the push models. Note
that the PUSH30 data points are significantly higher than the PUSH10 data points.
If we compare the median cases, then we can see that while the median radio

3Responses are suppressed because the client would not be awake to receive them, cfr. https://tools.
ietf.org/html/draft-tcs-coap-no-response-option-10

4This is the default behaviour for CoAP observe in Contiki’s Erbium

https://tools.ietf.org/html/draft-tcs-coap-no-response-option-10
https://tools.ietf.org/html/draft-tcs-coap-no-response-option-10

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 137

PUSH10 PULL10 PUSH30 PULL30
0

5000

10000

15000

20000

M
ed

ia
n

en
er

gy
 u

sa
ge

 p
er

 c
at

eg
or

y
(u

J)

0

5000

10000

15000

20000

To
ta

l E
ne

rg
y

U
sa

ge
(u

J)

CPU
IRQ
TX
RX

Figure 5.9: Left: stacked bar plot of median energy usage per category. Right: box plot of
total energy usage.

energy expenditures are similar (the same amount of data is being sent in both
cases) the CPU and IRQ categories are not. This is because the micro controller
has to process more timer interrupts per data transmission as the time between
transmissions is three times longer. Finally, also note that the two distributions of
measurements for the 30 seconds configurations are clearly skewed towards higher
energy expenditures (i.e. larger errors bars with larger variation at higher values).
This difference is caused by the fact that the total number of sent RPL messages
for refreshing upwards and downwards routes increases as the data transmission
interval increases. Thus for larger intervals the fraction of energy expenditure data
points that include RPL message transmissions will be higher and therefore the
box plots will be skewed towards higher values.

Figure 5.10 shows the sum of packets received and transmitted by the con-
strained node per data transmission period. The median for all configurations is
one, which is explained by the fact that nineteen out of twenty data messages are
NON messages with no response. Here we can also see that the RPL messages
skew the box plots for the PUSH30 and PULL30 scenarios towards the top. Note
that the effect of retransmissions of CON messages is hard to see in this plot as
they only make up five percent of the data points.

138 CHAPTER 5

5.6.3 Proof of concept: real world deployment

In the context of a national project5, a proof of concept was developed that demon-
strates the feasibility of the platform presented in this paper. The project involved
three industrial parties that develop monitoring solutions for waste bins, construc-
tion cranes and freight containers. Each of these partners has developed their own
vertical system, where customers access monitoring data via a web portal that is
hosted inside the vertical. The goal of the proof of concept was to show that our
platform enables third parties to collect data and configure constrained devices
spanning multiple application domains while maintaining the same levels of per-
formance (i.e. code size, energy expenditure and life time) and service of the
constrained devices as offered by the existing (proprietary) solutions. Figure 5.11
shows the different components in the proof of concept. At the bottom there are
four different types of constrained devices, each fulfilling a monitoring task for a
specific use case.

The waste bin trackers consist of a 32 bit ARM Cortex-M3 microchip (Silicon
Labs EFM32) and an Analog Devices ADF7021-N narrow-band transceiver that
operates at 169 MHz. These trackers run on contiki, implement the IETF stack for
constrained devices and form a wireless sensor network via RPL in non-storing
mode. The trackers are sleeping devices and employ the mirror server model to

5https://www.iminds.be/en/projects/2014/03/03/comacod

PUSH10 PULL10 PUSH30 PULL30
0

2

4

6

8

10

Su
m

 o
f R

X
an

d
TX

 p
ac

ke
ts

Figure 5.10: Sum of packets received and transmitted for different communication models

https://www.iminds.be/en/projects/2014/03/03/comacod

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 139

Cloud platform

CONSTRAINED
DEVICES

Environmental
sensors (contiki)

Monitoring app

CoAP/UDP/
6LoWPAN/
802.15.4

Waste bins sensors
(contiki)

Monitoring app

CoAP/UDP/
6LoWPAN/
802.15.4

Container tracker
(TinyOS)

Proprietary
application

TCP/
IPv4/
GPRS

Crane tracker
(Embedded Linux)

Monitoring app

CoAP/UDP/
IPv4/
GPRS

Control and management dashboard

Data broker + control platform
Data exchange/access/control/visibility

Data + events
Discover available resources + type

CoAP communication

Report, …

Sensor reconfiguration
Get resource state

ABSTRACTION
LAYER

CoAP server
abstraction

HTTP ‐
CoAP proxy

ACCESS
LAYER

Aggregated
push

Resource
directory L1

On‐site
mirror server

Resource
directory L2

Abstraction
Manager

Shipper,
Concierge, …

Vertical Mapping
prop. ‐ CoAP

Mirror
Server

(Reverse) access
mapper

Figure 5.11: Proof of concept: components and setup

send periodical status information (waste bin tray events and battery status) to a
mirror server that is running on the 6LoWPAN router (i.e. the on-site mirror server
in figure 5.11). The 6LoWPAN router is connected to the private network of the
company via a VPN tunnel over the public Internet. By also connecting to this
private network from the access layer and offering a virtual device for every waste
bin tracker registered on the on-site mirror server, the cloud platform has enabled
applications to integrate the waste bins as normal CoAP servers. This is a great
improvement over the database with web API integration option which was the
only choice offered by the company in the past.

140 CHAPTER 5

The container tracker is composed of a msp430f5437 microcontroller, a CC2520
802.15.4 transceiver and a Telit HE910 HSPA+ modem with built-in GPS. Con-
tainers form an 802.15.4 network that is used for inter-container communication
towards a data sink that transmits the data to a back-end system using its HSPA
modem. The containers run TinyOS and use a proprietary data format over TCP
for communicating with the back-end. In this case, it was not considered viable
to change the proprietary stack running on the devices as the development effort
was deemed too high. Instead, the container tracker back-end system implements
a mapping from the proprietary technology to embedded web services by means
of a CoAP mirror server. For every tracker, the back-end system registered an end-
point on the mirror server with the corresponding resources for location, container
mode, temperature and humidity. Whenever the back-end receives data from the
container trackers, the resources of the corresponding tracker on the mirror server
are updated. Whenever the container trackers wake up, the back-end checks the
mirror server for changes (e.g. the container’s mode resource has changed), re-
trieves all updates for the mirrored resources and translates these updates to cor-
responding actions in the proprietary technology. Because of the virtual device
abstraction, all trackers are hosted as CoAP servers.

The crane tracker is a powerful embedded Linux device that is running an
ARM9 CPU with 128MB of ROM and 64MiB RAM. The trackers incorporate a
GPS and GPRS chip and used to establish a VPN tunnel with the back-end. In
this private network, a tracker remained reachable at a fixed IP address even when
its public IP address changed on the cellular network and when it was behind
NAT. Data was exchanged using a proprietary format over TCP. There was no real
integration possible as the company only offered a web portal for its customers
for following up on their cranes. For this use case, the proprietary technology
was dropped and the tracker implements a mobile CoAP server instead. Using
our cloud platform, the VPN connection was no longer necessary as the virtual
device in the cloud can offer a fixed IPv6 endpoint for the tracker. Whenever the
tracker’s GPRS IPv4 address changes, it updates the mapping in the access layer
via a CoAP POST request to the cloud system. In order to traverse any firewall
and NAT systems between the tracker and the cloud, the cloud’s access layer uses a
UDP source address that is equal to the destination UDP address that was used by
the tracker for updating its mapping. As in the previous case, there was no viable
integration strategy for third parties (only a web portal was available). By using our
cloud platform, trackers are offered as virtual CoAP servers and made discoverable
via the resource directory. Figure 5.12 shows the tracker updating its access layer
mapping as well as the message exchange triggered by a CoAP request to the
/gps/full resource of the corresponding virtual device. The two packets marked in
black show that our system uses the destination UDP address of the registration to
contact the tracker afterwards.

The final class of devices consists of Zolertia Z1 nodes that were used as the
main testing platform and were deployed as per figure 5.7. These devices periodi-
cally collect temperature and humidity data using the aggregated push and mirror
server communication models.

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 141

Fi
gu

re
5.

12
:

(1
)+

(2
):

C
ra

ne
tr

ac
ke

r
up

da
te

s
ac

ce
ss

la
ye

r
m

ap
pi

ng
.(

3)
-(

6)
:

C
oA

P
re

qu
es

tt
o

de
vi

ce
ab

st
ra

ct
io

n
(3

)t
ri

gg
er

s
co

rr
es

po
nd

in
g

ac
ce

ss
la

ye
r

re
qu

es
t(

4)
.

Fi
gu

re
5.

13
:

C
on

tr
ol

an
d

m
an

ag
em

en
td

as
hb

oa
rd

:
th

e
us

er
is

pr
es

en
te

d
w

ith
a

lis
to

fd
ev

ic
es

an
d

re
so

ur
ce

s.
Th

e
us

er
ca

n
ac

ce
ss

da
ta

co
lle

ct
ed

fr
om

re
so

ur
ce

s,
re

tr
ie

ve
a

ne
w

re
so

ur
ce

re
pr

es
en

ta
tio

n
or

up
da

te
a

re
so

ur
ce

.

142 CHAPTER 5

To illustrate that our cloud platform facilitates integration of constrained de-
vices in the Internet, the project also implemented a control and management
dashboard for the different devices from the previous paragraphs. This dashboard
is hosted on server infrastructure owned by one of the project partners. HTTP is
used for communication from the dashboard to the different types of constrained
devices via the corresponding virtual devices and the HTTP/CoAP proxy. The
dashboard discovers the available devices and their resources via the resource di-
rectory hosted in the abstraction layer of the platform. Figure 5.13 shows the
interface offered to a user to inspect the list of available devices and resources.
Resource attributes (such as type, readable and writable) are determined from the
CoAP resource type that is available at discovery. For every resource, the user
can choose to view collected data, retrieve a fresh representation or update the re-
source. Figure 5.14 shows the collected data for the /s/w resource of the waste bin
tracker hosted at the coap://[2001:6a8:1d80:600::4] virtual device. Data includes
switch events (i.e. waste bin lid events) and battery status.

Finally, the case study from section 5.2 where the crane tracker updates the
location of the container tracker when it picks up a container was realized. One
problem here was the IPv4-only Internet access provided by the crane’s GPRS
modem. Here the CoAP IPv4/IPv6 forward proxy was used for updating the loca-
tion resource on the virtual device of the container tracker. Another problem was
that of local discovery: i.e. how does the crane tracker discover the virtual de-
vice corresponding to the container it picked up. Here a number of solutions were
formulated: using RFID communication for communicating the virtual device’s

Figure 5.14: The dashboard presents a table with collected data of a waste bin tracker to
the user

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 143

address or searching the platform’s L2 resource directory using the container’s
endpoint identifier (communicated via RFID or optically via a barcode). However,
in the end a solution for this local discovery problem was not implemented in this
proof of concept.

5.7 Related work
While cloud computing and the Internet of Things come from different back-
grounds, recent developments show that they are increasingly being adopted to-
gether. The cloud and IoT can complement one another in a number of interesting
ways, as will become clear from the works presented in the following paragraphs.

The work of Guinard D. was one of the first to propose a resource-oriented
architecture for the Internet of Things [30] [31]. By implementing RESTful re-
sources on things, the interfaces of things have become similar to those found on
the World Wide Web and therefore this is referred to as the “Web of Things”. When
these resources are integrated into larger services, the result becomes a service-
oriented architecture which is a well-known concept that is often realized on top
of cloud computing infrastructure.

Historically, one of the first research domains where cloud computing and IoT
have been combined was wireless sensors networks. In [32] a Sensor-Cloud infras-
tructure is introduced, where physical sensors are virtualized as virtual sensors on
cloud computing. Motivation for doing so include, the limited resources and capa-
bilities of physical sensors and the ease of use and management of virtual sensors.
A comprehensive work on WSN and cloud is the survey [32] by Alamri et. al. The
authors argue that the combination of Cloud and WSN enables remote access and
allows to annotate sensors with XML in the cloud. The use of XML encourages
the interchangeability of different types of sensors and allows to describe services
offered by sensors (e.g. via the Web Service Description Language). Here also
the use of web-services is presented to enable different applications to talk to one
another. The resulting WSN is coined as a service-oriented sensor network.

In recent years, a sizeable amount of research has been performed on the com-
bination of Cloud computing and the IoT. This has resulted in numerous papers as
well cloud-based IoT platforms. In [9] Botta et al. introduce the CloudIoT para-
digm which is the integration of Cloud and IoT. The paper is a good introduction to
the topic as it lists the motivation, applications, related work, research challenges,
open issues and platforms for the CloudIoT paradigm. The listed motivations for
CloudIoT include the abundance of resources (storage, computational and com-
munication) of the Cloud as well as significant improvements in scalability, in-
teroperability and security. One identified research challenge is the integration of
huge amounts of highly heterogeneous things into the Cloud, which overlaps with
our research objectives from section 5.3.

Another work focuses on moving application logic from the firmware to the
cloud. In [33] Kovatsch et al. introduce the Thin Server Model, where devices in
the role of a server does not host any application logic. Instead, devices expose

144 CHAPTER 5

their elementary functionality via RESTful services and any application logic of
devices runs on application servers (possibly in the Cloud). The resulting IoT
infrastructure is said to be agnostic of any applications. Our work adopts some
of these ideas (e.g. thin devices and extra-device applications), however we also
address the issue that not all devices can be modeled using the Thin Server Model.
Some (legacy) devices implement proprietary technology or implement a client-
based communication model (e.g. sleeping devices). The work presented here
also looks at how these devices can be integrated into the Internet and be made
available to such “Application servers”.

Works by Alam et. al [34] and Zaslavsky et. al [28] propose the Sensing
and Sensor as a Service ideas. SenaaS exposes functional aspects of sensors as
services by hiding technical details of the sensor from the user. By specifying and
delivering sensor functionalities and capabilities as services, one can exploit all the
existing service standards for interacting with sensors. Similar to our work, [34]
defines an “IoT Virtualization Framework” where IoT devices are virtualized and
offer virtual services. However, in our work the virtualization takes place at the
device level (i.e. with every device having a virtual counterpart that is hosted at a
specific IPv6 address) whereas the virtualization in [34] takes place on the service
layer. Furthermore, the technology used in both approaches is different: our work
focuses on the IETF stack for constrained devices whereas the work of Alam et.
al focuses on the standards developed by the Open Geospatial Consortium (i.e.
Sensor Web Enablement or SWE). One important difference is that our approach
enables virtual devices to be used by constrained devices. This is typically not the
case for the more verbose SWE standards.

In [10], Li et. al present a cloud-based Platform as a service solution (PaaS)
for delivering IoT services. Like our work, the authors make the observation that
today IoT services are typically delivered as physically-isolated vertical solutions
where all system components are customized and tightly coupled for each use case.
The authors propose instead to move to “virtual verticals” that are built on top of
a common cloud infrastructure according to the presented IoT PaaS architecture.
By building on top of the functionality already provided by the platform, IoT so-
lution providers can deliver their services more efficiently and can continuously
extend their product. Our work is similar to the IoT PaaS concept, but it is focused
on solving the specific problem of integrating heterogeneous constrained devices
into the IoT. Furthermore we argue that the IoT should move away from all verti-
cals (both virtual and physical) in order to realize applications that span multiple
domains and IoT product manufacturers.

In Cloud4Sens [35] two strategies for managing sensing resources in the cloud
and providing them as a services are discussed and a cloud framework that handles
these two strategies is presented. In the data-centric model, the cloud offers data to
its clients as a service without knowing how the data is measured and processed.
In the second model, the device is at center and clients can access data via devices
and customize one or more virtual devices. To this end the architecture includes
an SWE abstraction layer that enables a number of different thing deployments
to interface with the cloud. The framework also includes a Software as a Service

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 145

component (SaaS) for offering data to interested clients and an Infrastructure as a
Service (IaaS) component that enables clients to interact with virtual devices. Our
solution can be seen as an alternative to the IaaS component that is geared towards
supporting heterogeneous devices and that is designed to allow constrained devices
to interact with other virtual devices. Through the resource adapters, our approach
also allows to enhance virtual devices with additional functionality.

Next to the works presented above, there are also many IoT platforms - both
commercial and academic - available today. The gap-analysis presented in [13]
considers over 30 of such platforms. One identified shortcoming is the integration
of sensor technologies without the use of gateways. Problems include the lack
of standards and heterogeneous interaction models. Both are addressed by our
work by relying on CoAP and showing how heterogeneous devices (with differ-
ent communication models) can be integrated. Other shortcomings include data
ownership and data fusion & sharing, while these topics are not addressed by our
platform itself they were part of the control and management dashboard in the
proof of concept in subsection 5.6.3. In the future we will look at how these can
be integrated as part of the platform.

In [36] a system architecture for IoT cloud services based on CoAP named Cal-
ifornium is presented. The architecture consists of three stages (network, protocol
and logic) that form a processing pipeline where each stage has its own separate
thread pool. The result is a highly scalable architecture as proven by a compari-
son with state of art alternatives from both the CoAP and HTTP server domain.
Even though the focus of the work is different than ours (scalability vs integration
and heterogeneity), it is mentioned here to demonstrate that CoAP is a suitable
protocol for (scalable) IoT cloud services.

CloudThings [37] is a service platform that allows users to run IoT application
on cloud hardware. It includes tools for application development and for oper-
ational management and deployment. The platform uses 6LoWPAN and CoAP
for communication with things and RESTful web services for integration with the
cloud. The platform offers web services for data subscription and discovery. How-
ever, these are only accessible over HTTP which limits their use for constrained
devices that wish to discover things via the platform. Also, the evaluation is very
limited and considers only HTTP for Cloud-Thing communications.

5.8 Conclusion
We have shown that our cloud-based platform facilitates the integration of con-
strained IoT devices into other services without significantly impacting service
and device operation. Experiments show that our platform supports a number of
different communication models that are abstracted away from services by inter-
facing with a virtual CoAP server abstraction. Furthermore, the proof of concept
demonstrates that the platform supports heterogeneous hardware platforms, com-
munication models and proprietary protocols. The developed control and manage-
ment dashboard shows that our platform can easily integrate constrained devices

146 CHAPTER 5

into third party services.
Future work will focus on what is currently missing in the platform. By offer-

ing Data as a Service (DaaS) services, others can access (historical) data without
being forced to capture this data when it is made available via the virtual device
abstraction. This will also require a data ownership mechanism, as data will be
offered separate from the device abstraction. Another weak point of the platform
is device to device interaction between local devices. In case of real-time appli-
cations, mechanisms to allow direct access between devices (e.g. by redirecting
devices to the device itself) might be necessary. However, due to the heterogene-
ity of the devices involved, we expect this to be a tall order. Finally, improving
and quantifying the scalability of our platform (e.g. via dynamic routing tables as
mentioned in section 5.6.1) will also be considered in the future.

Acknowledgements
The authors would like to acknowledge that part of this research was supported
by the COMACOD project. The iMinds COMACOD project is co-funded by
iMinds (Interdisciplinary institute for Technology) a research institute founded by
the Flemish Government. Partners involved in the project are Multicap, OneAc-
cess, Track4C, Invenso and Trimble, with project support of IWT.

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 147

References

[1] Ericsson Inc. More than 50 Billion Connected Devices - Taking connected
devices to mass market and profitability. Technical Report February, Erics-
son, 2011. Available from: http://vdna.be/publications/Wp-50-Billions.Pdf,
doi:284 23-3149 Uen.

[2] D. Evans. The internet of things: how the next evolution of the inter-
net is changing everything. Technical report, Cisco, 2011. Available
from: https://www.cisco.com/c/dam/en{ }us/about/ac79/docs/innov/IoT{ }
IBSG{ }0411FINAL.pdf.

[3] Joseph Bradley, J. Barbier, and D. Handler. Embracing the Internet of Ev-
erything To Capture Your Share of 14.4 Trillion USD. Cisco Ibsg Group,
page 2013, 2013. Available from: http://www.cisco.com/web/about/ac79/
docs/innov/IoE{ }Economy.pdf.

[4] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi. From today’s intranet of things
to a future internet of things: a wireless-and mobility-related view. Wireless
Communications, IEEE, 17(6):44–51, 2010.

[5] U. Hunkeler, H. L. Truong, and A. Stanford-clark. MQTT-S – A Pub-
lish/Subscribe Protocol For Wireless Sensor Networks. In Communi-
cation Systems Software and Middleware and Workshops, 2008. COM-
SWARE 2008. 3rd International Conference on, pages 791–798, 2008.
doi:10.1109/COMSWA.2008.4554519.

[6] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler. Standardized Protocol Stack for the Internet of
(Important) Things. Communications Surveys Tutorials, IEEE, 15(3):1389–
1406, 2013. doi:10.1109/SURV.2012.111412.00158.

[7] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. Internet of
things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[8] J. Macaulay, L. Buckalew, and G. Chung. Internet of Things in
Logistics. Technical report, DHL Trend Research, 2015. Avail-
able from: www.dhl.com/en/about{ }us/logistics{ }insights/dhl{ }trend{ }
research/internet{ }of{ }things.html.

[9] A. Botta, W. D. Donato, V. Persico, and A. Pescapé. On the Integration
of Cloud Computing and Internet of Things. 2nd International Conference
on Future Internet of Things and Cloud (FiCloud), 2014. Available from:
http://wpage.unina.it/walter.dedonato/pubs/iot{ }ficloud14.pdf.

http://vdna.be/publications/Wp-50-Billions.Pdf
https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
https://www.cisco.com/c/dam/en{_}us/about/ac79/docs/innov/IoT{_}IBSG{_}0411FINAL.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoE{_}Economy.pdf
http://www.cisco.com/web/about/ac79/docs/innov/IoE{_}Economy.pdf
www.dhl.com/en/about{_}us/logistics{_}insights/dhl{_}trend{_}research/internet{_}of{_}things.html
www.dhl.com/en/about{_}us/logistics{_}insights/dhl{_}trend{_}research/internet{_}of{_}things.html
http://wpage.unina.it/walter.dedonato/pubs/iot{_}ficloud14.pdf

148 CHAPTER 5

[10] F. Li, M. Voegler, M. Claessens, and S. Dustdar. Efficient and Scalable
IoT Service Delivery on Cloud. In 2013 IEEE Sixth International Con-
ference on Cloud Computing, pages 740–747. IEEE, jun 2013. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
6676764, doi:10.1109/CLOUD.2013.64.

[11] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A
survey. Computer Networks, 54(15):2787–2805, oct 2010. Avail-
able from: http://linkinghub.elsevier.com/retrieve/pii/S1389128610001568,
doi:10.1016/j.comnet.2010.05.010.

[12] K. Romer and F. Mattern. The design space of wireless sensor net-
works. IEEE Wireless Communications, 11(6):54–61, dec 2004. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
1368897, doi:10.1109/MWC.2004.1368897.

[13] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. A gap analysis of Internet-
of-Things platforms. Computer Communications, 89-90:5–16, feb 2016.
Available from: http://arxiv.org/abs/1502.01181, arXiv:1502.01181.

[14] S. Husain, A. Prasad, A. Kunz, A. Papageorgiou, and J. Song. Recent Trends
in Standards Related to the Internet of Things and Machine-to-Machine Com-
munications. Journal of Information and communication convergence engi-
neering, 12(4):pp.228–236, 2014. Available from: http://dx.doi.org/10.6109/
jicce.2014.12228, doi:10.6109/jicce.2014.12.4.228.

[15] I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. Van den Abeele, E. De
Poorter, I. Moerman, and P. Demeester. IETF standardization in the field
of the Internet of Things (IoT): a survey. Journal of Sensor and Actuator
Networks, 2(2):235–287, 2013.

[16] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. RFC 7252: Constrained
Application Protocol (CoAP), 2014. Available from: https://tools.ietf.org/
html/rfc7252.

[17] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP: An Application Protocol
for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62–67,
mar 2012. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6159216, doi:10.1109/MIC.2012.29.

[18] K. Hartke. Observing Resources in CoAP. IETF CoRE Working Group,
2014. Available from: https://tools.ietf.org/html/draft-hartke-coap-observe.

[19] L. Daniel, M. Kojo, and M. Latvala. Experimental Evaluation of the CoAP,
HTTP and SPDY Transport Services for Internet of Things. In 7th Inter-
national Conference on Internet and Distributed Computing Systems, pages
111–123, 2014.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676764
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676764
http://linkinghub.elsevier.com/retrieve/pii/S1389128610001568
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1368897
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1368897
http://arxiv.org/abs/1502.01181
http://dx.doi.org/10.6109/ jicce .201 4 . 1 2 228
http://dx.doi.org/10.6109/ jicce .201 4 . 1 2 228
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
https://tools.ietf.org/html/draft-hartke-coap-observe

INTEGRATING HETEROGENEOUS DEVICES & COMMUNICATION MODELS 149

[20] Z. Shelby and C. Bormann. Core resource directory. IETF CoRE
Working Group, 2014. Available from: https://tools.ietf.org/html/
draft-ietf-core-resource-directory-02.

[21] M. Vial. CoRE Mirror Server, 2013. Available from: https://tools.ietf.org/
html/draft-vial-core-mirror-server-01.

[22] F. Van den Abeele, J. Hoebeke, I. Moerman, and P. Demeester. Fine-grained
management of CoAP interactions with constrained IoT devices. In Network
Operations and Management Symposium (NOMS), 2014 IEEE, pages 1–5,
2014. doi:10.1109/NOMS.2014.6838368.

[23] F. Van den Abeele, T. Vandewinckele, J. Hoebeke, I. Moerman, and P. De-
meester. Secure communication in IP-based wireless sensor networks via a
trusted gateway. In 2015 IEEE Tenth International Conference on Intelligent
Sensors, Sensor Networks and Information Processing (IEEE ISSNIP 2015),
Porto, Portugal, 2015.

[24] E. Dijk, A. Rahman, T. Fossati, S. Loreto, and A. Castellani. Guidelines for
HTTP-CoAP Mapping Implementations. IETF CoRE Working Group, 2014.
Available from: https://tools.ietf.org/html/draft-ietf-core-http-mapping-06.

[25] B. Savolainen, Teemu Silverajan. CoAP Communication with Alter-
native Transports, 2015. Available from: https://tools.ietf.org/html/
draft-silverajan-core-coap-alternative-transports-08.

[26] M. Becker, K. Li, K. Kuladinithi, and T. Poetsch. Transport of
CoAP over SMS, 2014. Available from: https://tools.ietf.org/html/
draft-becker-core-coap-sms-gprs-05.

[27] C. Bormann, M. Ersue, and A. Keranen. RFC 7228: Terminology for
Constrained-Node Networks. Technical report, IETF, 2014. Available from:
http://tools.ietf.org/html/rfc7228.

[28] A. Zaslavsky, C. Perera, and D. Georgakopoulos. Sensing as a service and
big data. In International Conference on Advances in Cloud Computing,
2013.

[29] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He. Software-based sensor node
energy estimation. In Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 409–410. ACM, 2007.

[30] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. Interacting
with the SOA-Based Internet of Things: Discovery, Query, Selection, and On-
Demand Provisioning of Web Services. Services Computing, IEEE Transac-
tions on, 3(3):223–235, 2010. doi:10.1109/TSC.2010.3.

https://tools.ietf.org/html/draft-ietf-core-resource-directory-02
https://tools.ietf.org/html/draft-ietf-core-resource-directory-02
https://tools.ietf.org/html/draft-vial-core-mirror-server-01
https://tools.ietf.org/html/draft-vial-core-mirror-server-01
https://tools.ietf.org/html/draft-ietf-core-http-mapping-06
https://tools.ietf.org/html/draft-silverajan-core-coap-alternative-transports-08
https://tools.ietf.org/html/draft-silverajan-core-coap-alternative-transports-08
https://tools.ietf.org/html/draft-becker-core-coap-sms-gprs-05
https://tools.ietf.org/html/draft-becker-core-coap-sms-gprs-05
http://tools.ietf.org/html/rfc7228

150 CHAPTER 5

[31] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From the Internet of Things
to the Web of Things: Resource-oriented Architecture and Best Practices. In
Architecting the Internet of Thing, pages 97–129. Springer Berlin Heidel-
berg, 2011. Available from: https://link.springer.com/chapter/10.1007{%}
2F978-3-642-19157-2{ }5, doi:10.1007/978-3-642-19157-2-5.

[32] M. Yuriyama and T. Kushida. Sensor-Cloud Infrastructure - Physical Sensor
Management with Virtualized Sensors on Cloud Computing. 2013 16th Inter-
national Conference on Network-Based Information Systems, 0:1–8, 2010.
doi:http://doi.ieeecomputersociety.org/10.1109/NBiS.2010.32.

[33] M. Kovatsch, S. Mayer, and B. Ostermaier. Moving application logic from the
firmware to the cloud: Towards the thin server architecture for the internet of
things. . . . Mobile and Internet . . . , 2012. Available from: http://ieeexplore.
ieee.org/xpls/abs{ }all.jsp?arnumber=6296948.

[34] S. Alam, M. M. R. Chowdhury, and J. Noll. SenaaS: An event-
driven sensor virtualization approach for Internet of Things cloud. In
2010 IEEE International Conference on Networked Embedded Sys-
tems for Enterprise Applications, pages 1–6. IEEE, nov 2010. Avail-
able from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5678060, doi:10.1109/NESEA.2010.5678060.

[35] M. Fazio and A. Puliafito. Cloud4sens: a cloud-based architecture for sensor
controlling and monitoring. IEEE Communications Magazine, 53(3):41–47,
mar 2015. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=7060517, doi:10.1109/MCOM.2015.7060517.

[36] M. Kovatsch, M. Lanter, and Z. Shelby. Californium: Scalable cloud services
for the internet of things with coap. In Proceedings of the 4th International
Conference on the Internet of Things (IoT 2014), 2014.

[37] J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, and H. Jin.
CloudThings: A common architecture for integrating the Internet of Things
with Cloud Computing. In Proceedings of the 2013 IEEE 17th International
Conference on Computer Supported Cooperative Work in Design, CSCWD
2013, pages 651–657, 2013. doi:10.1109/CSCWD.2013.6581037.

https://link.springer.com/chapter/10.1007{%}2F978-3-642-19157-2{_}5
https://link.springer.com/chapter/10.1007{%}2F978-3-642-19157-2{_}5
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6296948
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6296948
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678060
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678060
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7060517
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7060517

6
Scalability analysis of large-scale

LoRaWAN networks in ns-3

Background

The advent of Low Power Wide Area Networks (LPWANs) promises to bring low
power, long range communication to the Internet of Things (IoT) at a low cost.
The low data rate communication offered by LPWANs is a good choice for use
cases where devices are battery powered, communication is sporadic and message
sizes are small. As such, LPWANs are a cost effective technology for monitoring
many of the objects around us. For example, connected waste bins, connected
street lights, connected fire hydrants and connected water and electricity meters are
either already available or under development. In industry, monitoring of rail way
infrastructure, liquid and gas tanks, pipelines and electricity and water networks
are some of the promising use cases.

Today, LPWAN end devices are integrated into services by programming against
a data integration API offered by the backend of a LPWAN network operator.
E.g. SigFox offers a REST API to their backend for device integration and The
Things Networks offers an MQTT-based API for backend integration. Appendix A
presents an alternative for LoRaWAN device integration which employs device vir-
tualization. This alternative hosts LoRaWAN end devices as virtual CoAP servers,
which handle the integration with the LPWAN backend API. This frees develop-
ers from integrating with the LPWAN-specific data integration API, instead they
are able to integrate via CoAP. Additionally, (resource-constrained) WoT devices
are able to interface with these virtual CoAP servers. A third integration option
stems from the lpwan IETF working group, which is looking to bring IP to LP-

152 CHAPTER 6

WAN end devices. Due to the severely limited frame sizes in LPWANs (e.g., 12
octets for SigFox and 19 octets for LoRaWAN (worst case)), the working group is
standardizing compression schemes for IPv6 that reduce the header size. Next to
IP header compression, the lpwan working group is also looking into CoAP header
compression.

Once end-to-end IP and CoAP are available in LPWANs, many of the tech-
niques presented in this dissertation can be applied to LPWANs. For example,
session-based security and comprehensive authentication and authorization could
be supported as discussed in Chapter 3. Extensive traffic filtering is expected to
be necessary, in order to avoid saturating the limited capacity of LPWANs. As
LPWAN devices are asleep for long periods of time, the mirror server model as
discussed in Chapter 5 could be applied. Alternatively, the reverse proxy approach
of Chapter 3 could prove valuable for handling sleepy devices.

The request-response message exchange pattern of CoAP differs from the traf-
fic pattern dominant in LPWANs, where traffic mostly originates from end de-
vices (i.e. upstream traffic) and traffic towards end devices (i.e. downstream
traffic) is uncommon. In LoRaWAN, confirmed messages have a traffic pattern
comparable to the request-response pattern, as every upstream message solicits
a downstream acknowledgment. One of the questions studied in this chapter
is how sending data as confirmed messages impacts the traffic delivery ratio in
LoRaWAN networks. The results show that the limited downstream capacity of
LoRaWAN networks is detrimental to the delivery ratio of confirmed upstream
messages, as the network is unable to send downstream acknowledgments due
to radio duty cycle restrictions. This problem is further exacerbated as missing
acknowledgments lead to end devices retransmitting messages that were in fact
successfully received by the network server. Similar problems would occur for
CoAP traffic, where acknowledgments for confirmable messages or responses to
(non)confirmable requests would suffer a similar fate. Solutions such as CoAP No
Server Response (cfr. RFC7967) could help to alleviate this problem by letting
LPWAN end devices express their disinterest to a CoAP server in all responses
against a particular request. In order to comprehend these effects, this chapter
studies the scalability of large-scale LoRaWAN by means of extensive modeling
and evaluations in a network simulator. The impact of sending upstream data as
unconfirmed or confirmed messages and the impact of downstream data traffic are
studied.

? ? ?

Floris Van den Abeele, Jetmir Haxhibeqiri, Ingrid Moerman and
Jeroen Hoebeke
Submitted to IEEE Internet of Things Journal on the Fifth of May, 2017.

Abstract As LoRaWAN networks are actively being deployed in the field, it is
important to comprehend the limitations of this Low Power Wide Area Network

LORAWAN SCALABILITY ANALYSIS 153

technology. Previous work has raised questions in terms of the scalability and ca-
pacity of LoRaWAN networks as the number of end devices grows to hundreds
or thousands per gateway. Some works have modeled LoRaWAN networks as
pure ALOHA networks, which fails to capture important characteristics such as
the capture effect and the effects of interference. Other works provide a more
comprehensive model by relying on empirical and stochastic techniques. This
work uses a different approach where a LoRa error model is constructed from ex-
tensive complex baseband bit error rate simulations and used as an interference
model. The error model is combined with the LoRaWAN MAC protocol in an ns-
3 module that enables to study multi channel, multi spreading factor, multi gate-
way, bi-directional LoRaWAN networks with thousands of end devices. Using the
lorawan ns-3 module, a scalability analysis of LoRaWAN shows the detrimental
impact downstream traffic has on the delivery ratio of confirmed upstream traffic.
The analysis shows that increasing gateway density can ameliorate but not elimi-
nate this effect, as stringent duty cycle requirements for gateways continue to limit
downstream opportunities.

6.1 Introduction
With the ongoing continuous growth of the Internet of Things, the number of IoT
application domains and deployments continues to increase. Market forecasts il-
lustrating this growth estimate that the number of connected IoT devices will con-
tinue to grow at an annual rate of 32% and will reach 20.8 billion IoT end points by
the end of this decade [1]. Some of these novel IoT applications require low-rate,
long-range and delay-tolerant wireless communication at very low energy usage
and cost. These types of requirements are hard to fulfill using traditional Machine
to Machine technologies such as cellular or WPAN [2]. Low Power Wide Area
Networks (LPWANs) are a new set of technologies that are designed to fill this gap
in traditional technologies. By combining low energy usage with long range com-
munication, they promise to bring connectivity that suits large scale, low power
and low cost IoT deployments with battery lives up to ten years [2]. The 2016
Cisco VNI 2015-2020 data traffic forecast estimates that the share of LPWANs in
global M2M connections will grow from 4% in 2015 to 28% in 2020 [3]. Similar
market share numbers for LPWANs are reported in [4].

LoRaWAN [5] is an LPWAN technology that builds on top of the LoRa mod-
ulation scheme, which is developed by Semtech. The LoRa alliance has stan-
dardized LoRa radio usage in sub-GHz unlicensed spectrum for most areas in the
world. By combining sub-GHz propagation and the LoRa modulation, LoRaWAN
networks can cover large areas with only limited amounts of infrastructure.
LoRaWAN networks are being deployed today. For instance in Belgium, Prox-
imus, a large telecommunications company, provides LoRaWAN coverage in the
whole of Flanders and in the major cities in Wallonia [6]. Another interesting
initiative is The Things Network, where a community of mostly volunteers is col-
laborating to build a world-wide LoRaWAN network.

154 CHAPTER 6

While LoRaWAN networks are already being actively deployed, a number
of questions remain unanswered about their performance as said networks grow
larger and larger. Most LPWAN technologies promise to connect a massive num-
ber of devices (e.g. tens of thousands of devices per LoRaWAN gateway), but how
valid is this claim in the case of LoRaWAN networks? What is the impact of net-
work parameters on large-scale LoRaWAN networks? Apart from a large number
of devices, what is the impact of multiple gateways in large-scale networks? Does
increasing gateway density yield measurable network performance benefits?

The work presented here aims to provide answers to the research questions
posed above by studying LoRaWAN networks in the ns-3 network simulator. A
network simulator provides the flexibility to relatively quickly study a large num-
ber of different LoRaWAN scenarios at the expense of accuracy due to limitations
in the modeling complexity. As such, the presented ns-3 module allows to study
LoRaWAN networks with a varying numbers of end devices and gateways, dif-
ferent traffic types and patterns, different data rates, different (re)transmission and
receive configurations and many other parameters. Finally, the presented work
also allows to study the impact of more fundamental changes to LoRaWAN net-
work mechanics as everything is implemented in software.

While a number of existing works have studied the scalability of LoRaWAN
networks, they do not take into account the impact of downstream traffic, inter-
ference between transmitters and the presence of multiple LoRaWAN gateways in
dense deployments. Additionally, the spectrum modeling technique newly intro-
duced in ns-3.26, which is applied in the LoRaWAN ns-3 module, should enable
the module to be used in future coexistence studies with heterogeneous technolo-
gies such as 802.11ah. A more detailed comparison with works from literature is
available in section 6.6.

The contributions of this work are as follows. Firstly, we built an error model
for the LoRa modulation for different code rates and spreading factors. Secondly,
we developed a comprehensive implementation of the LoRaWAN standard in the
ns-3 simulator with support for class A end devices, multi gateway networks and
an elementary network server. Thirdly, we conducted a scalability study focus-
ing on the impact of confirmed versus unconfirmed messages and the impact of
downstream traffic in large-scale LoRaWAN networks.

Before detailing how LoRaWAN networks are modeled in ns-3 in section 6.4,
the next section provides the necessary background on LoRa and LoRaWAN in
order to comprehend the modeling efforts in the ns-3 module. Section 6.5 presents
the scalability analysis itself. The results of the analysis are discussed and are
compared to literature in section 6.6.

6.2 Background: LoRa, LoRaWAN and ns-3
As a Low Power Wide Area Network technology, LoRaWAN networks offer ben-
efits such as large coverage areas and long battery life operation for end devices.
Unlike conventional network technologies (e.g. cellular and LAN), the trade-off in

LORAWAN SCALABILITY ANALYSIS 155

data rate versus range leans heavily towards range in LoRaWAN. LoRaWAN net-
works further employ a proprietary physical modulation technique (named LoRa)
which has been developed with long range and low power operation at its core.
This section describes some of the aspects of LoRaWAN networks that are impor-
tant for the remainder of this paper.

The LoRa physical modulation is a chirp spread spectrum (CSS) technique
where the base symbol is an up-chirp. An up-chirp is a signal in which the fre-
quency increases with time. More specifically, in LoRa the frequency increases
linearly with time so that the frequency of the up-chirp sweeps the entire band-
width of the signal. The constellation diagram of LoRa consists of time-shifted
up-chirps. Therefore, at the receiver the demodulation process attempts to deter-
mine the time shift in the received up-chirp.

Next to bandwidth, the spreading factor (SF) is a second important parameter
of the LoRa modulation as it provides the flexibility of trading range for data rate.
The spreading factor can range from seven to twelve and determines the LoRa
symbol rate as: Rs =

BW
2SF . As the spreading factor increases the symbol rate is

lowered, thereby trading reduced data rate for increased range. For a bandwidth of
125kHz, the PHY data rates range from 6835bps to 365bps for SF seven to twelve.
The different spreading factors are orthogonal. This means that a LoRa gateway
can receive multiple transmissions on different spreading factors simultaneously.
Note that SF bits are mapped per LoRa symbol.

In order to further increase the robustness of the LoRa modulation, additional
techniques such as forward error correction and interleaving are employed. These
techniques are discussed in section 6.4.1.1. Additionally, LoRa radios operate in
the sub-GHz unlicensed bands as they provide a good trade-off between available
unlicensed spectrum and reduced path loss. The combination of these design con-
siderations results in a high link budget at the expense of data rate, which means
that LoRa transmissions can still be received successfully even though they are
below the noise floor.

LoRaWAN networks employ the robust LoRa modulation in order to achieve
long range operation. They are standardized by the LoRa alliance, which has defi-
ned medium access, frame formats, provisioning and management messages, secu-
rity mechanisms, device management and other aspects. Figure 6.1 illustrates that
LoRaWAN networks form one hop star topologies around gateways, which act as
packet forwarders between end devices and a central network server (NS). The net-
work server is responsible for MAC layer processing and acts as a portal between
applications running on end devices and application servers. The LoRaWAN stan-
dard defines three classes for end devices (A, B and C) in order to cater to a number
of different scenarios. This work focuses on class A end devices as this class pro-
vides the longest battery life.

Class A end devices have their transceivers in deep sleep for the majority of
the time and wake up infrequently to transmit data toward the network server.
Wireless medium access in LoRaWAN follows a ALOHA scheme, which does not
employ listen before talk, and is therefore subject to restrictions in most areas of
the world. In Europe for example, the 868MHz band consists of a number of sub-

156 CHAPTER 6

Figure 6.1: Architecture of LoRaWAN networks (image courtesy of Semtech)

bands where radio duty cycle restrictions range from 0.1% to 10% with 1% being
most common. Note that each of these sub-bands is composed of one or more
channels.

Class A
end device

TX RX1 RX2

RX1_DELAY

RX2_DELAY

Figure 6.2: Downlink receive window timing for LoRaWAN class A end devices

As class A end devices are unreachable most of the time, the opportunities
for sending to the device are scarce. As per the standard, class A end devices are
obliged to open one or two receive windows after each upstream transmission in
order to allow the NS to deliver a potential message to the end device. Figure 6.2
illustrates the timing for opening these windows, which is equal to one and two
seconds after the end of the upstream transmission for the first and second receive
window respectively. When an end device receives a downlink transmission in the
first window, it is freed from opening the second window. Otherwise, it must open
the second window. Note that an end device listens on the same channel and SF as
the last upstream transmission in the first receive window (unless RX1DROffset
differs from zero), while it listens on a separate channel and SF12 in the second
window. Additionally, a class A end device must defer all pending upstream trans-
missions until after the receive window(s).

Finally, both upstream and downstream messages may be sent as either con-
firmed and unconfirmed messages. Confirmed messages are sent using a straight-

LORAWAN SCALABILITY ANALYSIS 157

forward retransmission scheme at the discretion of the end device, without vio-
lating the duty cycle restrictions. Downstream (re)transmissions have to wait for
an open receive window and their timing is therefore controlled by the upstream
traffic timing of an end device. The NS can however set a frame pending bit in a
downstream message in order to signal to an end device that it might want to open
a receive window sooner than normal.

To conclude this section ns-3 is briefly introduced. Ns-3 is an open source
discrete-event network simulator, targeted primarily for research and educational
use [7]. It provides support for Wi-Fi, LTE, IEEE 802.15.4 and other networks
and also implements an IP networking stack. Ns-3 is often used for evaluating
wireless networks. Examples of recent work include [8], which investigates the
performance of IEEE 802.11n frame aggregation, and [9], which has added sup-
port for the new sub-GHz IEEE 802.11ah standard to ns-3. A novel feature in ns-3
is the SpectrumPhy class, which enables modeling of inter-technology interference
and which is used in this work to implement the LoRa PHY.

6.3 Problem statement and approach

As mentioned, the anticipated growth of IoT in general and LPWANs in particular
raises the question how these technologies will scale as the size of these networks
grows. Vendors are keen to highlight the positive aspects of their respective prod-
ucts, but are less inclined to point out certain flaws. Therefore, an objective study
of the limits of these LPWANs is warranted and needed.

Specifically for LoRaWAN networks, this work attempts to explore the limits
of these networks in terms of size. This work attempts to answer the following
research questions:

• What is the impact of end device density on network performance?

• What is the impact of the different message types on network performance?

• What is the impact of assigning data rates to end devices?

• What is gained in terms of network performance by increasing the gateway
density?

In order to formulate an answer to these questions, a simulation based approach
was followed as it allows modeling large scale networks (i.e. up to 10 000 end
devices). The ns-3 simulator was a natural choice due to its widespread adoption
in the network research community. Also, the new SpectrumPhy feature promises
to enable modeling multiple LPWAN technologies in parallel in ns-3 and to study
co-existence and other problems in the future. Finally, this work aspires to provide
a useful tool for research into LoRaWAN networks.

158 CHAPTER 6

6.4 LoRaWAN ns-3 module
Our modeling of LoRaWAN networks in ns-3 comprises a number of different
elements. Firstly, an error model for the LoRa modulation was implemented in
ns-3 based on baseband simulations of a LoRa transceiver over an Additive White
Gaussian Noise (AWGN) channel. Secondly, the LoRaWAN PHY and MAC lay-
ers were added in ns-3 for gateways and class A end devices. Thirdly, ns-3 applica-
tions were developed to represent LoRaWAN class A end devices and LoRaWAN
gateways. Finally, a simple LoRaWAN network server was added to ns-3.

An overview of the LoRaWAN ns-3 module is presented in figure 6.3. While
end device nodes contain a single MAC/PHY pair, gateways consists of one
MAC/PHY pair per supported spreading factor. For example a gateway that sup-
ports multi-SF (i.e. able to receive all LoRa spreading factors simultaneously) on
six channels contains 36 MAC/PHY pairs. Apart from the components listed in fig-
ure, the ns-3 module also contains a number of unit tests and examples of varying
complexity. The lorawan ns-3 module is publicly available at
https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan. Future works that use
this ns-3 module, are requested to cite this manuscript.

6.4.1 LoRa PHY error model
6.4.1.1 LoRa PHY baseband implementation

In order to model the effects of path loss and intra-LoRa interference, an error
model for the LoRa PHY has been developed in ns-3. The basis for this error
model is a series of complex baseband Matlab simulations that measure the bit er-
ror rate (BER) for different LoRa PHY configurations over an AWGN channel. A
block diagram of the BER simulations is shown in figure 6.4. The EP 2763321 A1
patent [10] and the works of Matt Knight [11] and Pieter Robyns [12] were invalu-
able resources for building the LoRA baseband implementation.

The information bits generated at the information source are mapped to code
bits by the error correction encoder. This encoder implements the 5/4, 7/4 and 8/4
code rates available in LoRa 1. While the 5/4 CR is a simple parity check code, the
7/4 and 8/4 CRs are (7,4) and (8,4) linear error-correcting Hamming codes. These
codes can correct one bit error and detect up to two bit errors.

Next, the diagonal interleaver shuffles the code bits so that at its output, groups
of PPM bits consist of bits from the same bit position of PPM consecutive code
words. For example, the first output word groups the bits at position 0 from PPM
consecutive code words. PPM represents the bit length of the output words of the
interleaver. In LoRa the PPM of the interleaver is equal to the LoRa spreading
factor. Consequently, the number of bits mapped per LoRa symbol is equal to the
spreading factor. Due to the interleaver, a lost symbol at the receiver is converted
into PPM 1-bit errors over PPM consecutive code words (rather than one PPM-bit
error in one code word without the interleaver).

1The 6/4 code rate was not implemented as it is seldom used.

https://github.com/imec-idlab/ns-3-dev-git/tree/lorawan

LORAWAN SCALABILITY ANALYSIS 159

Lo
R
a
W
A
N
E
n
d
D
e
v
ic
e
A
p
p
lic
a
ti
o
n

Lo
R
a
W
A
N
N
e
tD
e
v
ic
e

Lo
R
a
W
A
N
M
a
c

Lo
R
a
W
A
N
P
h
y

S
p
e
ct
ru
m
C
h
a
n
n
e
l

Lo
R
a
W
A
N
G
a
te
w
a
y
A
p
p
lic
a
ti
o
n

Lo
R
a
W
A
N
N
e
tD
e
v
ic
e

Lo
R
a
W
A
N
M
a
c

Lo
R
a
W
A
N
P
h
y

Lo
R
a
W
A
N
N
e
tw

o
rk
S
e
rv
e
r

Lo
R
a
W
A
N
M
a
c

Lo
R
a
W
A
N
P
h
y

..
.

End devices

Gateways

Fi
gu

re
6.

3:
Lo

R
aW

A
N

ns
-3

m
od

ul
e

ov
er

vi
ew

:
cl

as
s

A
en

d
de

vi
ce

s,
ga

te
w

ay
s

an
d

th
e

ne
tw

or
k

se
rv

er

160 CHAPTER 6

Information

source

Error correction

encoder

Diagonal

interleaver

Data

whitening

Gray

decoder

LoRa

modulator

AWGN

channel

LoRa

demodulator

Information

sink

Error correction

decoder

Diagonal

deinterleaver

Data

dewhitening

Gray

encoder

SEN
D

ER
R
EC

EIV
ER

Figure 6.4: Block diagram of LoRa PHY baseband implementation: sender, AWGN
channel and receiver

After the interleaver, the output words are whitened in order to boost the en-
tropy of the information source. Note that in the BER simulations the information
bits are drawn from a uniform distribution, therefore the entropy of the information
source is already at its maximum. Before passing the whitened bit stream to the
modulator, it is reverse Gray mapped first. This produces a sequence of integers,
which are fed to the LoRa modulator. At the LoRa modulator, a sequence of N
time-shifted complex baseband up-chirp samples is generated via a phase accu-
mulator as given by equation 6.1 where N, the number of samples per baseband
symbol, is equal to 2SF fs

BW . The input integer determines the time-shift of the
up-chirp.

m(i) =

{
exp (−jπ) if i = 0

m(i− 1) exp (jf(i)) if i = 1, . . . , N − 1
(6.1)

Where the instantaneous frequency f(i) is given by equation 6.2:

f(i) = −π +
i

N
2π, for i = 1, . . . , N − 1 (6.2)

Next, the samples of the LoRa symbol are sent over the AWGN channel for a
given signal to noise ratio (SNR) as per equation 6.3:

c(i) = m(i) +

√
Es

2SNR
[N (0; 1) + jN (0; 1)]

for i = 0, . . . , N − 1

(6.3)

where N (0; 1) is the standard normal distribution and SNR = 10SNRdB/10.
Note that the energy per symbol is equal to one for the LoRa modulator.

At the receiver, the LoRa demodulator employs correlation-based demodula-
tion where the received symbol is correlated to all known LoRa symbols. The
decision on which symbol was sent, is made by selecting the LoRa symbol with
the maximum correlation value. After demodulation, the receiver chain is the re-
verse of the sender chain. The error rate is measured in the information bits, after
error correction.

LORAWAN SCALABILITY ANALYSIS 161

6.4.1.2 LoRa PHY BER simulations

In order to determine the BER of the LoRa physical layer, simulations were ran
for the LoRa PHY parameters listed in table 6.1. There was no oversampling, so
thereforN = 2SF holds. The simulations were ran for SNR values in steps of 1dB
in the ranges as published in the table.

Table 6.1: LoRa PHY parameters for BER simulations

BW SF CR SNR(dB) BW SF CR SNR(dB)
125kHz 7 1,3 [-20..0] 125kHz 11 1 [-23..-13]
125kHz 8 1,3 [-20..0] 125kHz 11 3 [-25..-13]
125kHz 9 1,3 [-20,-8] 125kHz 12 1,3 [-26..-17]
125kHz 10 1,3 [-22,-8]

Afterwards an exponential curve as per equation 6.4 was fitted to a subset of
the logarithmic values of the measured BER values. The subset of BER values
used for curve fitting was determined as followed. Firstly, measured BER values
of zero were discarded. Secondly, BER values were added to the subset until the
BER reached a value where the corresponding packet delivery rate (PDR) dropped
below one in a million for a 13B packet. The packet length of 13B stems from
the minimum LoRa PHY payload length for a LoRaWAN transmission: 1B MAC
header, 8B frame header and 4B MIC. Additionally, for every curve fit a SNR
cut-off point was chosen so that the packet delivery rate for a 13B (=108b) packet
was equal to one in a million at the cut-off point. Table 6.2 lists the details of
the curve fit plus the SNR cut-off point for every LoRa PHY configuration that
was simulated. Figure 6.5 plots the curve fits for SF7 to SF12, only code rate 3 is
plotted.

log 10(BER(SNRdB)) = α exp (βSNRdB) (6.4)

6.4.2 LoRaWAN PHY layer
After the error model was completed, work started on the implementation of the
LoRaWAN PHY layer in ns-3. By building the LoRaWANPhy class on the
SpectrumPhy concept [13], inter-technology simulations (e.g. interference test-
ing) are anticipated to be feasible in the future. The majority of the PHY models
available in ns-3 employ a chunk-based signal to interference noise ratio (SINR)
approach for modeling the influence of propagation loss and intra-technology in-
terference during packet reception [14] [15] [16]. Every time the SINR changes
during packet reception (e.g. an interfering transmission starts or ends), a new
chunk is started and the error rate of the previously received chunk is evaluated
based on the constant SINR and bit length of this chunk and the BER as provided
by the error model. Note that the LoRaWANPhy only initiates packet reception

162 CHAPTER 6

Table 6.2: Exponential curve fit parameters for the LoRa PHY error model in ns-3

SF CR α β rsquare SNR cut-off (dB)
7 1 -30.2580 0.2857 0.9997 -12.2833
7 3 -105.1966 0.3746 0.9999 -12.6962
8 1 -77.1002 0.2993 0.9999 -14.8485
8 3 -289.8133 0.3756 0.9995 -15.3588
9 1 -244.6424 0.3223 0.9993 -17.3749
9 3 -1114.3312 0.3969 0.9994 -17.9260
10 1 -725.9556 0.3340 0.9996 -20.0254
10 3 -4285.4440 0.4116 0.9991 -20.5581
11 1 -2109.8064 0.3407 1.0000 -22.7568
11 3 -20771.6945 0.4332 0.9996 -23.1791
12 1 -4452.3653 0.3317 0.9986 -25.6243
12 3 -98658.1166 0.4485 0.9993 -25.8602

for transmissions with an SINR value above the SNR cut-off value. Incoming
transmissions which fall below the cut-off value are dropped immediately by the
PHY.

Apart from the reception modeling, the LoRaWANPhy ns-3 class also imple-
ments a finite state machine to structure its execution flow. The FSM has six states
as shown in fig 6.6. The transitions between states are mostly triggered from the
MAC layer (not shown in the figure). In the RX ON and TX ON states the PHY
is ready to respectively start a packet reception or transmission. In the BUSY RX
state the PHY is busy receiving a transmission (as per the aforementioned chunk-
based reception). In the BUSY TX state the PHY is sending a transmission. Ongo-
ing receptions and transmissions may be canceled at any time, which is indicated
by the state transitions to TRX OFF. The PHYs of class A end devices are ex-
pected to be in the Idle state most of the time, whereas the PHYs of gateways are
expected to be in the RX ON state for the majority of the time. There are no differ-
ences in the PHY ns-3 classes between class A end devices and gateways. Hence,
differences in transceiver design between end devices and gateways are not taken
into account in this model.

6.4.3 LoRaWAN MAC layer

The driver of the PHY layer is the LoRaWANMac ns-3 class. Its functionality
includes queuing packets for delivery, opening receive windows and handling re-
transmissions on end devices and keeping track of a node’s radio duty cycle (RDC).
While there is one LoRaWANMac class for both class A end devices and gateways,
the functionality of this class differs as e.g. retransmissions for gateways are han-
dled by the network server (see section 6.4.6). Likewise, the gateway MAC has no
concept of receive windows as it always listening for upstream traffic (when not

LORAWAN SCALABILITY ANALYSIS 163

-25 -20 -15 -10 -5 0

E
s
/N

0
 SNR (dB)

1e-20

1e-15

1e-10

1e-05

1

B
E

R

LoRa BER for AWGN SNR in LoRaWANPhy

SF7/CR3

SF8/CR3

SF9/CR3

SF10/CR3

SF11/CR3

SF12/CR3

Figure 6.5: Curve fits used for the LoRa PHY error model in ns-3.

transmitting).
Similarly to LoRaWANPhy, the LoRaWANMac class also implements an FSM

as depicted in figure 6.7. While an end device MAC object passes through all states
in figure 6.7, gateway MAC objects are limited to three states. The UNAVAIL state
is a case unique to gateways, where the MAC is blocked from sending a packet.
This state is activated when one of the other MACs on the gateway is in the TX
state, thereby prohibiting simultaneous transmissions on different MAC objects on
the same gateway.

The chain at the top of the figure is related to the mandatory receive windows
for class A end devices in LoRaWAN networks. After the TX state, an end device
always transitions to the WRW1 state. The end device spends one second (start-
ing from the end of the transmission) in this ‘wait for RW1’ state, after which it
opens RW1. The end device checks whether a PHY preamble has been received
12.25 LoRa symbols after the beginning of the receive window. If a preamble has
been detected, the device continues receiving the downstream transmission. If a
preamble has not been detected, it closes the receive window and transitions to the
WRW2 state. If the end device successfully receives a downstream transmission
in RW1, it transitions to the IDLE state. Otherwise, it closes the receive window
and transitions to the WRW2 state.

164 CHAPTER 6

TRX_OFF

IDLE

RX_ON TX_ON

BUSY_RX BUSY_TX

Figure 6.6: Finite state machine of the LoRaWANPhy class in ns-3

Gateway

IDLE

TX UNAVAIL

WRW1 RW1 WRW2 RW2 ACK_TO

Figure 6.7: The LoRaWANMac FSM consists of three states for gateways and seven states
for class A end devices

In the WRW2 state, the end device is waiting to open the second receive win-
dow (in the RW2 state) after two seconds after the end of the transmission. The
same PHY preamble check from RW1 is performed after opening RW2. If a down-
stream transmission is received in RW2, the end device will transition to the IDLE
state. Otherwise, it might transition to the ACK TO (acknowledgment timeout)
state where it spends a random length of time before transiting to the IDLE state.
The ACK TO state is only visited when the end device expected an acknowledg-
ment in one of its receive windows (i.e. after the transmission of a confirmed
upstream message). In case an acknowledgment is not expected, the device transi-
tions directly to the IDLE state from RW2.

Retransmissions in the case of end devices are handled entirely by the
LoRaWANMac class. As long as the number of remaining transmissions has not
expired or a downstream frame with the Ack bit set has not been received, a con-
firmed data packet will remain in the transmission queue. The number of transmis-
sions for confirmed messages can be set via
‘DEFAULT NUMBER US TRANSMISSIONS’ (in lorawan.h) and is set to four

LORAWAN SCALABILITY ANALYSIS 165

by default. Subsequent (re)transmissions are throttled based on the radio duty cy-
cle limitations of the active sub-band. To this end there is a per LoRaWAN node
singleton object, LoRaWANMacRDC, which keeps track of a node’s duty cycle for
the different sub-bands. The LoRaWANMAC class also supports sending uncon-
firmed upstream messages more than once, as per the guidelines in the LoRaWAN
standard on the number of repetitions field (NbRep). Finally, the LoRaWANMac
class adds a 1B LoRaWANMacHeader (encoding the message type) and a 4B
dummy MIC to the MAC payload before passing the packet on to the PHY.

6.4.4 LoRaWAN class A end device ns-3 application

A new ns-3 application, LoRaWANEndDeviceApplication, was developed to rep-
resent class A LoRaWAN end devices in ns-3. The application exposes attributes
for parameters such as the data rate of the end device and the packet length and
message type of upstream transmissions. It also supports configurable random
variables for upstream channel selection and packet generation times. The applica-
tion is responsible for generating the MAC payload, as such it adds the LoRaWAN
frame header to the application payload. This frame header encodes the end device
address, the packet counter and the frame port of the application. Meta data about
the packet transmission - such as the desired channel, data rate and code rate - are
passed on to the PHY by means of a LoRaWANPhyParamsTag packet tag.

6.4.5 LoRaWAN gateway ns-3 application

The LoRaWANGatewayApplication is a simple application that is installed on
gateway ns-3 nodes. Apart from passing packets to and accepting packets from
the network server, it also supports querying a gateway’s RDC status from the NS.
Packets that are to be sent downstream are tagged with the
LoRaWANPhyParamsTag packet tag by the network server. The
LoRaWANNetDevice on the gateway will select the MAC/PHY pair correspond-
ing to the PHY attributes that are listed in the packet tag (i.e. spreading factor and
channel).

6.4.6 LoRaWAN Network server

The LoRaWANNetworkServer class is instantiated only once per LoRaWAN net-
work simulation. This singleton object accepts upstream packets from gateways
and sends downstream traffic to end devices via gateways. It exposes the follow-
ing attributes to configure downstream traffic generation: packet size, confirmed
or unconfirmed messages and random variable for packet generation (an Expo-
nentialRandomVariable by default). The class keeps track of information such as
device address, packet counters, last data rate, last known gateway(s) and last seen
time for every end device. Based on the packet counters, it can detect duplicate
data packets from multiple gateways.

166 CHAPTER 6

The network server generates downstream data and acknowledgments. To this
end, it contains a per end device packet queue for storing downstream traffic. For
every end device, it stores RW1 and RW2 timers that are used for scheduling down-
stream traffic. When a timer expires, the network server goes through the list of
last known gateway(s) and searches for a gateway that can send the queued down-
stream packet immediately. These timers are scheduled every time an upstream
transmission is processed by the network server. Finally, the network server takes
care of retransmissions for confirmed downstream data packets.

6.5 Scalability analysis of LoRaWAN networks
The LoRaWAN ns-3 module includes the “lorawan-tracing-example.cc“ example
which was used for all simulations discussed in this section. It enables automation
of simulations from a CLI by setting simulation parameters and outputting ns-
3 tracing results to csv files. The simulations focused on a number of different
scenarios, which are detailed in the subsections below.

All simulations consist of one, two or four gateways and a configurable number
of end devices deployed in a disc with a 6 100m radius 2. All gateways and end de-
vices are configured to use the same 125kHz LoRaWAN channel (868.100MHz),
with the exception of the high power RW2 channel at 869.525MHz which lies in
a sub-band with a 10% RDC restriction. This single upstream channel scenario
is similar to that of a “the things gateway” as sold by The Things Networks. End
devices employ Activation By Personalisation and as such no network join mes-
sages are exchanged. The gateways are deployed at fixed positions, which depend
on the number of gateways in the simulation. In case of one gateway, it is po-
sitioned in the origin of the disc. In case of two gateways, they are positioned
one radius apart on a diameter line of the disc. In case of four gateways, they
are positioned on the corners of a square which is centered on the disc origin and
which has a diagonal equal to the disc radius. The gateway positions are visual-
ized in figure 6.8. The end devices are uniformly distributed in the disc (using
the UniformDiscPositionAllocator in ns-3) and have a fixed position during the
simulation. For all experiments the default propagation loss model was used in
ns-3. This model, named ’LogDistancePropagationLoss‘, has a 3.0 exponent at a
46.6777 dB reference loss at one meter.

Simulation scenarios are run for three different upstream data generation pe-
riods: 600, 6 000 and 60 000 seconds. Each simulation is run for a simulation
time equal to hundred times the upstream data generation period. For every end
device, the transmission time of the first upstream packet is picked from a random
variable uniformly distributed between zero and the upstream period. Subsequent
upstream packets are periodically generated according to the data generation pe-
riod. Upstream packets have an application payload of 8 bytes, which implies a
PHY payload of 21 bytes.

2This radius was chosen as for the presented ns-3 error model, the PDR for 21B packets sent at
SF12 lies close to 10% at this distance for the LogDistancePropagationLoss model.

LORAWAN SCALABILITY ANALYSIS 167

R=6100m

Figure 6.8: Positions for one (cross), two (circles) and four (rectangles) gateways in ns-3
simulations

Downstream data generation happens according to an end-device specific ex-
ponential random variable (representing an arrival of events, rather than periodic
data transmission). The mean of this exponential random variable is set to either
60 000s or 600 000s, representing - on average - one downstream packet every ten
and hundred upstream packets respectively.

For all simulations, the packet delivery ratio was measured. An unconfirmed
upstream data packet is considered delivered, if it was received successfully by
a gateway node. A confirmed upstream data packet is considered delivered, if
one of its transmissions was successfully received by a gateway node and the end
device received an acknowledgment from the network server. Note that the pre-
sented PDRs take into account all generated packets, even packets that are queued
for transmission are counted towards PDR. Therefore, the PDR reflects overall
network throughput (for the same number of devices and data period).

6.5.1 Assigning LoRa spreading factors to end devices
The first problem that was studied is how to assign LoRa spreading factors to end
devices. Spreading factors have a major impact on packet delivery rates. Under-
estimating the spreading factor (i.e. assigning a SF that is too low) may lead to
reception errors due to low SNR. Overestimating the spreading factor (i.e. assign-
ing a SF that is too high) may lead to inefficient use of air time.

Three SF assignment strategies have been considered:

1. Random: assign spreading factors to end devices according to a uniform
random distribution.

2. Fixed: assign the same spreading factor to end devices.

3. PER: for every end device, find and assign the lowest spreading factor for
which the packet error ratio falls below a certain threshold.

168 CHAPTER 6

For each strategy a number of simulations were performed for a six hundred sec-
onds upstream data period and a varying number of end devices. For the PER
strategy a number of different PER thresholds were tested as well: 0.001, 0.01, 0.1
and 0.25. The packet delivery ratios for the different SF allocation strategies are
presented in figure 6.9. Packets are sent as unconfirmed messages.

Number of end devices

P
a

c
ke

t
d

e
liv

e
ry

 r
a
tio

1
0

0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

0.0

0.2

0.4

0.6

0.8

1.0

Random SF
Fixed SF7
Fixed SF8
Fixed SF9
Fixed SF10
Fixed SF11
Fixed SF12
PER 0.001
PER 0.01
PER 0.1
PER 0.25

Figure 6.9: Packet delivery ratios for various spreading factor assignments strategies

Comparing the results, it is clear that the PER strategy performs the best out of
three in terms of PDR. The PDRs for different PER thresholds are very similar and
there is no threshold that yields the highest PDR in all considered network sizes.
Note that while there exist large variations in PDRs between different spreading
factors, figure 6.9 plots the global PDR across all spreading factors. A PER thresh-
old of 0.01 is chosen for allocating spreading factors in the remainder of this paper.
With this threshold, there are on average about 43% SF12, 20% SF11, 12% SF10,
8% SF9, 6% SF8 and 11% SF7 in a single gateway LoRaWAN network with radius
6 100 meters. This is represented graphically in figure 6.10.

Note that for small networks (i.e. less than 100 end devices) the 75% PDR of
the fixed SF12 strategy might suffice. As this eliminates the need for active data
rate (ADR) in such small networks, the downstream traffic of ADR can be avoided.

LORAWAN SCALABILITY ANALYSIS 169

X

Y

-R

−
R 2 0 R 2 R

-R

−
R

2

0

R

2

R SF7
SF8
SF9
SF10
SF11
SF12

Figure 6.10: Spreading factor allocation to end devices for PER strategy (0.01)

Of course sending at an unnecessarily high data rate causes an end device to waste
energy. As the number of devices increases (i.e. more than 1 000 end devices), the
random strategy outperforms the fixed strategies in terms of PDR. This is explained
by the fact that for larger networks the losses are mostly due to collisions and that
the random strategy reduces the number of collisions (compared to a fixed strategy)
by leveraging the orthogonality of the different spreading factors.

6.5.2 Unconfirmed vs confirmed upstream data
6.5.2.1 Single gateway LoRaWAN network

Next, the impact of sending upstream data as confirmed MAC messages is con-
sidered on the PDR. One would expect the LoRaWAN retransmission scheme to
boost the PDR, as unacknowledged messages are retransmitted by the end device.
In the case of confirmed messages, an end device attempts four transmissions be-
fore dropping the message. Unconfirmed messages are sent once for the UNC
scenarios and four times for the 4UNC scenarios (i.e. NbRep = 4). At all times,

170 CHAPTER 6

end devices respect duty cycle restrictions.

Number of end devices

P
a

c
ke

t
d

e
liv

e
ry

 r
a
tio

1
0

0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

0.0

0.2

0.4

0.6

0.8

1.0

UNC 60000s
UNC 6000s
UNC 600s
4UNC 60000s
4UNC 6000s
4UNC 600s
CON 60000s
CON 6000s
CON 600s

Figure 6.11: PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC) and
confirmed (CON) upstream messages in a single gateway LoRaWAN network.

The packet delivery ratios for sending upstream data as unconfirmed and con-
firmed messages are shown in figure 6.11 for three different data periods in case of
a single gateway LoRaWAN network. The PDR decreases as data is sent more fre-
quently and as the number of end devices increases. In case of unconfirmed MAC
messages, the primary cause of undelivered packets is due to collisions where the
gateway is busy receiving a transmission and therefore any other transmission with
the same data rate is dropped during the ongoing reception. For the 600 seconds
data period, the share of drops due to collisions in all undelivered packets is close
to 90%. Another 9% of the undelivered packets are destroyed due to interference
during reception. The remainder of the undelivered packets are dropped due to
an SINR value that falls below the SNR cut-off point (cfr. section 6.4.1.2). While
sending unconfirmed messages four times increases the PDR for low traffic scenar-
ios, the PDR is lower in scenarios where interference becomes the limiting factor.

Note that the share of slower data rates in the undelivered packets is higher than
that of faster data rates. This is partially due to the higher share of end devices with

LORAWAN SCALABILITY ANALYSIS 171

slower data rates in the networks and partially due to the higher transmission times
at lower data rates. The share of undelivered packets sent at SF11 or SF12, lies
at 80.9%, 93.6% and 95.8% for the 600, 6 000 and 60 000 seconds data periods
respectively.

Table 6.3: Transmission of downstream acknowledgments and upstream packets for
confirmed messages in one, two and four gateway LoRaWAN network simulations.

Missed RWs: lowly saturated scenarios marked by ∗,
highly saturated scenarios marked by †.

GW DP #ED Ack RW1 Ack RW2 Missed RWs #packets
message

1 60000 100 8798 1354 0 ∗∗∗ 1.05
1 60000 1000 47500 53162 7968 ∗∗ 1.19
1 60000 10000 91950 438343 1604427 ∗ 3.08
1 6000 100 4741 5316 1122 1.21
1 6000 1000 9542 43767 155513 3.07
1 6000 10000 17078 52033 1465697 3.90
1 600 100 943 4315 15052 ††† 3.08
1 600 1000 1623 5199 143153 †† 3.90
1 600 10000 6880 5273 262385 † 3.98
2 60000 100 9896 174 0 ∗∗∗ 1.02
2 60000 1000 75062 24590 1026 ∗∗ 1.07
2 60000 10000 248682 631806 877387 ∗ 2.09
2 6000 100 7926 2170 0 1.03
2 6000 1000 25400 63095 84263 2.04
2 6000 10000 42798 103371 2229616 3.79
2 600 100 2513 6477 8502 ††† 2.02
2 600 1000 4838 10327 216539 †† 3.77
2 600 10000 13117 10577 645143 † 3.97
4 60000 100 10012 0 0 ∗∗∗ 1.00
4 60000 1000 95350 4866 201 ∗∗ 1.01
4 60000 10000 646058 355183 128053 ∗ 1.17
4 6000 100 9380 656 2 1.00
4 6000 1000 66712 33302 12972 1.16
4 6000 10000 135780 201664 2433131 3.47
4 600 100 6568 3470 1360 ††† 1.15
4 600 1000 14906 20085 242954 †† 3.45
4 600 10000 26866 21163 1306882 † 3.94

Somewhat counterintuitively, the PDR of confirmed messages is not always
higher than that of unconfirmed messages. The PDR of CON messages is only
higher than that of UNC in cases where the the traffic load is very low. In the
simulations this is only the case for 100, 500 and 1000 end devices for a 60 000 s
data period and for 100 end devices for a 6 000 s data period. In all other cases

172 CHAPTER 6

the PDR of confirmed messages is lower. Recall that a confirmed message is
only considered delivered if the end device receives an acknowledgment for that
message. Table 6.3 shows that the number of missed receive windows (for sending
an acknowledgment) goes up as the traffic load increases. Receive windows are
missed because the gateway is unable to transmit at the start of a receive window
due to the duty cycle restrictions that apply in the sub-band of a receive window.
While CON and 4UNC have similar traffic loads for saturated networks (i.e. at the
highest loads, the traffic load of CON is close to that of 4UNC3), the PDR of CON
messages is lower than that of 4UNC. This difference is explained by the missing
downstream acknowledgments for CON messages. Finally, when a gateway sends
an acknowledgment in either RW1 or RW2, all ongoing receptions at the gateway
are aborted; which further decreases the PDR.

6.5.2.2 Multi gateway LoRaWAN networks

In this section the effect of the number of gateways in a LoRaWAN network on
the PDR is studied. Note that for applying the PER 0.01 SF allocation strategy,
the PER to the closest gateway is calculated for every end device. Increasing the
gateway density, as per figure 6.8, is anticipated to have more than one effect.
Firstly, it should enable higher data rates for end devices due to an increase in
link budget (as on average gateways will appear closer). Secondly, as downstream
transmissions in RW1 are sent with the same data rate as the upstream transmis-
sions, RW1 acknowledgments should also profit from the higher data rates of end
devices. Finally, as duty cycle restrictions apply per gateway, the LoRaWAN net-
work should be able to acknowledge more messages as the gateway density goes
up.

Table 6.4: End devices at a specific data rate for LoRaWAN networks with one, two and
four gateways

GW SF7 SF8 SF9 SF10 SF11 SF12
1 11% 6% 8% 12% 20% 43%
2 21% 10% 17% 18% 16% 18%
4 40% 16% 23% 17% 4% 0

Table 6.4 lists the fraction of end devices at specific data rates in a 10 000 end
devices LoRaWAN network with one, two and four gateways (following the PER
SF assignment strategy, see section 6.5.1). The table clearly illustrates that higher
gateway densities lead to faster overall data rates.

Figures 6.12 and 6.13 show the PDR for a LoRaWAN network with two and
four gateways respectively. Notice how for unconfirmed messages, the PDR in-
creases greatly as the number of gateways increases. For confirmed messages, the

3Table 6.3 illustrates that as end devices retransmit more frequently, the average number of packets
per confirmed message approaches four.

LORAWAN SCALABILITY ANALYSIS 173

Number of end devices

P
a

c
ke

t
d

e
liv

e
ry

 r
a
tio

1
0

0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

0.0

0.2

0.4

0.6

0.8

1.0

UNC 60000s
UNC 6000s
UNC 600s
4UNC 60000s
4UNC 6000s
4UNC 600s
CON 60000s
CON 6000s
CON 600s

Figure 6.12: PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC) and
confirmed (CON) upstream messages in a two gateway LoRaWAN network.

increase in PDR is noticeable but is is not as sharp as for unconfirmed messages.
Studying table 6.3, it is clear that the number of sent acknowledgments increases
as the number of gateways increases. The seemingly contradicting relation be-
tween number of missed RWs and the number of gateways is explained as follows.
In saturated LoRaWAN networks (i.e. scenarios with low PDRs for unconfirmed
messages), the number of sent messages that are successfully received increases
with the gateway density. In case of confirmed messages, the higher number of
received upstream messages means that the network server is able to identify a
larger number of receive windows of end devices (as RWs are always opened af-
ter a transmission of an end device). When gateways are unable to send in these
receive windows (due to duty cycle restrictions), the number of missed RWs in-
creases. This is illustrated for the simulation scenarios marked with the † symbol
in table 6.3. In less saturated scenarios (marked with the ∗ symbol), the num-
ber of missed RWs goes down as increasing the gateway density does not lead to
identifying more receive windows. Instead, the number of missed RWs decreases
and more acknowledgments are sent (as seen in columns RW1 and RW2), which

174 CHAPTER 6

Number of end devices

P
a

c
ke

t
d

e
liv

e
ry

 r
a
tio

1
0

0

5
0

0

1
0

0
0

5
0

0
0

1
0

0
0

0

0.0

0.2

0.4

0.6

0.8

1.0

UNC 60000s
UNC 6000s
UNC 600s
4UNC 60000s
4UNC 6000s
4UNC 600s
CON 60000s
CON 6000s
CON 600s

Figure 6.13: PDR for unconfirmed (UNC), NbRep = 4 unconfirmed (4UNC) and
confirmed (CON) upstream messages in a four gateway LoRaWAN network.

benefits the PDR.

6.5.3 Downstream data traffic
In the final part of this evaluation, the impact of sending downstream data is stud-
ied. While most LoRaWAN deployments are expected to exhibit high asymmetry
between the volume of upstream and downstream data, occasional downstream
data messages are expected to be sent. Potential reasons for downstream data in-
clude notifying the end device of an event, end device and network management
and updating application parameters (e.g. sensor sampling interval). Due to the
sparseness and stochastic nature (e.g. events) of downstream data, generation of
downstream data messages in ns-3 is modeled via a per-end device Poisson process
with a configurable average rate λ and mean inter arrival time µ = 1

λ .
In terms of simulations the upstream scenario with a data period of six thou-

sand seconds is chosen as a starting point. Two average downstream rates of one
DS packet every 60 000s and 600 000s are considered, which corresponds to one
DS packet every ten and hundred US packets respectively. Both confirmed and un-

LORAWAN SCALABILITY ANALYSIS 175

confirmed downstream messages and confirmed and unconfirmed upstream mes-
sages are taken into account. Simulations were ran for one, two and four gateway
networks with 100, 500, 1 000, 5 000 and 10 000 end devices. Downstream pack-
ets have a 21B size, which holds eight bytes of application payload.

Table 6.5: Packet delivery ratios of downstream data messages

Downstream Packet Delivery Ratios with 1 GW
US DS UNC DS CON µ

U
N

C 98 97 94 67 40 99 97 93 59 33 10
99 96 92 80 69 100 96 93 80 69 100

C
O

N 100 98 92 50 31 100 97 90 48 30 10
99 98 93 63 45 100 97 92 61 44 100

Downstream Packet Delivery Ratios with 2 GWs
DS UNC DS CON µ

U
N

C 100 98 97 91 75 99 97 96 89 68 10
100 98 97 93 88 99 97 97 92 87 100

C
O

N 100 99 98 79 59 99 99 98 78 58 10
99 99 98 85 73 99 100 98 84 72 100

Downstream Packet Delivery Ratios with 4 GWs
DS UNC DS CON µ

U
N

C 100 100 100 98 96 100 99 99 98 96 10
100 100 100 98 97 100 100 100 97 96 100

C
O

N 100 100 100 97 91 100 99 99 97 88 10
100 100 100 97 94 100 100 100 97 92 100

Tables 6.5 and 6.6 present the PDRs of downstream and upstream data mes-
sages respectively for the different parameters that were tested. The five columns
per quadrant in the tables represent results for 100, 500, 1 000, 5 000 and 10 000
end devices from left to right.

Studying table 6.5, the effect of saturating the available airtime at the gate-
way is clearly visible for simulations with one gateway and a large number of
nodes (i.e. ≥5 000). As the number of gateways increases, the downstream traffic
load is spread over more gateway which leads to less saturation per gateway and
therefore to an increase in downstream PDR. The numbers also show that sending
US data as confirmed messages negatively impacts the PDR of downstream data
messages. This is because confirmed US messages require a downstream message
for an acknowledgment, which increases the traffic load and therefore saturation
on the gateway(s). Finally, table 6.5 also shows that for saturated scenarios the
PDR for confirmed downstream messages is slightly lower than for unconfirmed
downstream messages. While the cause of this is not obvious, it is probable that the
70-80% PDR of US messages in saturated scenarios (see UNC 6 000s figure 6.11)
leads to losses of upstream acknowledgments which decreases downstream data
PDR in the case of confirmed DS messages.

Comparing table 6.6 to the 6 000s US PDRs in figures 6.11, 6.12 and 6.13,

176 CHAPTER 6

Table 6.6: Packet delivery ratios of upstream messages in the presence of downstream data

Upstream Packet Delivery Ratios with 1 GW
US DS UNC DS CON µ

U
N

C 98 95 90 70 60 98 95 89 70 60 10
98 96 92 79 68 98 96 92 79 68 100

C
O

N 100 81 49 10 5 100 81 49 10 5 10
100 83 52 12 6 100 83 52 12 6 100

Upstream Packet Delivery Ratios with 2 GWs
DS UNC DS CON µ

U
N

C 99 98 96 87 80 99 97 96 87 80 10
99 98 97 92 88 99 98 97 92 88 100

C
O

N 100 98 87 23 11 100 98 87 23 11 10
100 98 88 26 14 100 98 88 26 13 100

Upstream Packet Delivery Ratios with 4 GWs
DS UNC DS CON µ

U
N

C 100 100 99 97 94 100 100 99 97 94 10
100 100 100 98 97 100 100 100 98 97 100

C
O

N 100 100 100 58 30 100 100 100 58 29 10
100 100 100 61 33 100 100 100 61 33 100

the presence of DS data traffic leads to a negligible decrease in US PDR for low
DS traffic rates (µ = 100) and a small decrease in US PDR for the high DS traffic
rate (µ = 10) for scenarios with 5 000 and 10 000 end devices. The decrease is
more profound for unconfirmed US messages than confirmed US messages, which
indicates an increase in US packet loss. This increase is US packet loss is due to
the gateway being unable to receive US transmissions during a DS transmission.
As more gateways are deployed, the DS data transmissions occupy less time per
gateway (due to overall higher data rates) which means that the gateways can spend
more time listening for US messages, thereby reducing the effect of DS data traffic
on US packet loss. Finally, note that there is no difference in terms of US PDR
between confirmed and unconfirmed downstream data messages.

6.6 Related work

A number of works have been published in literature that study the scalability of
LoRa(WAN) LPWA networks.

In one of the first works on this topic, Mikhaylov et al. [17] present an analysis
of the capacity and scalability of LoRa LPWANs. The authors perform an ana-
lytical analysis of the maximum throughput for a single LoRaWAN end device,
taking into account such factors as RDC and the influence of receive windows.
The authors note that receive windows drastically increase the time between sub-
sequent transmissions and that RDC restrictions reduce the maximum through-

LORAWAN SCALABILITY ANALYSIS 177

put further. The authors applied the same methodology to determine the capac-
ity of LoRaWAN based on ALOHA access. While it is true that the LoRaWAN
MAC access is an ALOHA scheme, empirical data has shown that the assump-
tions made in pure ALOHA access do not adequately model a LoRaWAN net-
work (see figure 4 in [18]). Specifically, it fails to model the interference between
concurrent transmissions as pure ALOHA assumes concurrent transmissions are
always lost regardless of their received power levels, timings and the presence of
forward error correction. A second, but similarly lacking, pure ALOHA capac-
ity analysis of LoRaWAN is discussed in [19]. In [20], Adelantado et al. also
calculate LoRaWAN capacity as the superposition of independent ALOHA-based
networks (one for each channel and for each SF). In conclusion, analyses based on
pure ALOHA fail to adequately model interference in LoRaWAN networks and
therefore underestimate the capacity of LoRaWAN LPWANs.

In [21], Georgiou and Raza provide a stochastic geometry framework for mod-
eling the performance of a single channel LoRa network. Two independent link-
outage conditions are studied, one which is related to SNR (i.e. range) and another
one which is related to co-spreading factor interference. The authors argue that
LoRa networks will inevitably become interference-limited, as end device cover-
age probability decays exponentially with increasing number of end devices. The
authors report that this is mostly caused by co-spreading factor interference and
that the low duty cycle and chirp orthogonality found in LoRa do little to mitigate
this. Finally, the authors note that the lack of a packet-level software simulation
is hindering the study into the performance of LoRa. It would be interesting to
combine the authors’ modeling of co-spreading factor interference with our ns-3
error model, as in the SINR approach all interference is treated as noise.

Reynders et al. [22] analyze the range and coexistence of two long range un-
licensed communication technologies: ultra narrowband (i.e. BPSK, as used by
Sigfox) and wideband spread spectrum (i.e. CSS, as used by LoRA). Through
physical layer simulation, the authors find that ultra narrowband networks have
larger coverage, while wideband spread spectrum networks are less sensitive to in-
terference. The authors also extract closed form expressions for the BER of UNB
and CSS from these simulations. Unfortunately, the presented results do not take
into account the effects of forward error correction (as used in LoRa). Reynders
et al. further compare CSS to UNB networks in ns-3 by investigating the impact
of the MAC protocols used in Sigfox and LoRaWAN. Their results show that CSS
networks offer higher throughput, while UNB networks support a larger number
of devices (note that the analysis assumes saturated traffic conditions for CSS de-
vices). From the manuscript the level of detail of the MAC models is unclear:
e.g. the authors do mention implementing downstream acknowledgments and data
rate management but other features are not discussed. In contrast, the presented
LoRaWAN ns-3 module fully supports class A end devices and provides a simple
network server. Finally, the authors stress the importance of data rate and fre-
quency management in wideband networks in order to limit the contention and
interference between devices. Indeed, section 6.5.1 shows that naive SF assign-
ment strategies can severely diminish the PDR.

178 CHAPTER 6

The work of Bor et al. [18] studies the limit on the number of transmitters sup-
ported by a LoRa system based on an empirical model. The authors performed
practical experiments that quantify the communication range and the capture ef-
fect of LoRa transmissions. These findings were used to build a purpose-built
simulator, LoRaSim, with the goal of studying the scalability of LoRa networks.
The authors conclude that LoRa networks can scale quite well if they use dynamic
transmissions parameter selection and/or multiple sinks. Our study confirms that
multiple sinks drastically improve scalability, even though we use a very differ-
ent approach for modeling interference. Furthermore, our study goes deeper into
modeling LoRaWAN as the LoRaWAN MAC layer is modeled and the impact of
confirmed messages and downstream traffic is studied.

The recent work presented by Pop et al. in [23] studies the impact of bidi-
rectional traffic in LoRaWAN by extending the LoRaSim simulator to include
bidirectional LoRaWAN communication. The resulting simulator is named Lo-
RaWANSim. Both our ns-3 module and LoRaWANSim allow to study the scala-
bility of LoRaWAN networks. Both works find that duty cycle limitations at the
gateway limit the number of downlink messages (Ack or data) a gateway can send.
This problem grows worse as the end device density increases, but can be partially
mitigated by increasing gateway density (see section 6.5.3). The authors of [23]
correctly identify that the absence of an acknowledgement does not necessarily
mean that the link quality has decreased and that a node should decrease its data
rate for subsequent retransmissions. Actually, decreasing the data rate might ex-
acerbate this problem as detailed in [23]. Notable differences between the two
simulators include that the LoRaWANSim manuscript is limited to single gateway
network, while the ns-3 module provides support for multi-gateway LoRaWAN
networks. Secondly, the collision models are quite different. The ns-3 module
builds on the error model derived from the complex baseband BER simulations,
while LoRaWANSim reuses the empirical model from LoRaSim. Both collision
models support the capture effect as well as modeling interference. Under capture
effect, we understand the ability to receive an interfered transmission in the pres-
ence of one or more interferers as long as the SNR of the interfered transmission
is sufficiently high for the transmission to be received error-free. The LoRaWAN-
Sim collision model incorrectly assumes perfect orthogonality between spreading
factors, while the ns-3 module counts every transmission on the same channel
with a different spreading factor as interference. Furthermore, the LoRaWANSim
manuscript does not mention the 10% RDC restriction that applies in the sub-band
of the RW2 channel in the EU. This underestimates the downlink capacity in RW2.
Thirdly, the SpectrumPhy model for the LoRa PHY in ns-3 enables modeling inter-
technology interference, which could facilitate studies on the interference between
802.11ah on LoRaWAN. Finally, the LoRaWANSim simulator does not appear to
be open source although the manuscript is still under revision at this time.

In another recent work, Magrin et al. [24] evaluate the performance of LoRa
networks in a smart city scenario. The authors propose a link measurement and a
link performance model for LoRa and implement a LoRaWAN system-level simu-
lator in ns-3. Their results show that LoRaWAN provides a higher throughput than

LORAWAN SCALABILITY ANALYSIS 179

a basic ALOHA scheme and that LoRaWAN networks scale well as the number of
gateways increases. Our work confirms these two results, while also studying the
impact of downstream traffic. Modeling the LoRa performance by means of the
SINR threshold matrix presented in [24] is quite different than our AWGN BER
performance model of LoRa. As both studies have their merits, it would be in-
teresting to try and merge both works into a single lorawan module in ns-3 in the
future.

6.7 Discussion
In this section a number of findings from our scalability analysis in section 6.5 are
discussed. The results show that confirmed messages severely impact the packet
delivery ratios of upstream messages. While increasing the number of gateways
helps to alleviate this problem somewhat, the results of the six hundred seconds
data period show that the PDR remains low even in a four gateway network. The
impact of downstream data messages on upstream messages was found to be negli-
gible due to the sparseness of the tested downstream data traffic load. Additionally,
little difference was found between sending downstream data as unconfirmed mes-
sages vs confirmed messages in terms of the DS PDR. Only for the single gateway
and µ = 10 scenario a significant difference was found.

As every study has its limitations, a number of points that could be improved
as part of future work are discussed here. As discussed in the related work study,
the approach of modeling all interference as noise has its drawbacks. Specifically,
literature has shown that while interference between different spreading factors
can be accurately modeled as noise, co-spreading factor interference may be mod-
eled more accurately via a stochastic approach. Future studies may opt to fine-tune
the path loss model in ns-3 in order to more closely match the radio environment
under study. An interesting point for future work is to study the impact of the
downstream data rate in RW2. By default, this is set to the lowest data rate in
the LoRaWAN standard. However when downstream data messages are not de-
livered due to RDC limitations (rather than low link quality), a faster RW2 data
rate might increase the capacity of the LoRaWAN. Another interesting research
topic would be to introduce structure to the LoRaWAN medium access. While
this will come at a cost in terms of traffic overhead and power consumption, it
might lead to higher network capacity by reducing interference. Additional MAC
features such as adaptive data rate (ADR) and network management (e.g. joining)
could be added to the ns-3 module. This would allow a more in-depth study of
the LoRaWAN standard. Extending the lorawan module to track the energy usage
of end devices would enable future studies to take power consumption into con-
sideration. For example, studying the trade-offs between energy usage, reliability
and network scalability when sending unconfirmed messages multiple times (i.e.
LoRaWAN NbTrans > 1) would be an interesting topic. Finally, it would be in-
teresting to study how LoRaWAN networks are affected by the presence of other
sub-GHz (LP)WAN technologies.

180 CHAPTER 6

6.8 Conclusion
In this work, a comprehensive model of LoRaWAN LPWANs in the ns-3 network
simulator is presented. This model includes an error model used for determining
range as well as interference between multiple simultaneous transmissions. All
spreading factors and code rates found in LoRaWAN are supported by the PHY
layer model of LoRa in the ns-3 module. The ns-3 module models the MAC layer
for class A end devices and supports both upstream and downstream (un)confirmed
messages via a simple network server. Furthermore, LoRaWAN networks with
multiples gateways are supported.

The ns-3 module forms the basis for a scalability analysis of single channel
multi gateway LoRaWAN LPWANs. The results of this analysis show that allo-
cating network parameters to end devices is hugely important for the performance
of LoRaWAN networks. Furthermore, the capacity for different types of traffic is
studied. The results confirm recent findings from literature that the limited down-
stream capacity highly deteriorates the packet delivery ratio of confirmed upstream
messages. Increasing the gateway density can delay the onset of this effect, but it
cannot be eliminated completely. Finally, it is the hope of this work to encour-
age future work on all aspects of LoRaWAN networks by means of the publicly
available ns-3 module. To this end, a number of interesting topics are presented as
well.

Acknowledgment
This work was carried out in the context of following projects. MoniCow is a
project realized in collaboration with imec. Project partners are DeLaval, Metagam,
Multicap, NXP Semiconductors N.V. and snapTonic, with project support from
VLAIO (Flanders Innovation & Entrepreneurship). IDEAL-IoT (Intelligent DEnse
And Longe range IoT networks) is an SBO project funded by the Fund for Scien-
tific Research-Flanders (FWO-V) under grant agreement #S004017N. ‘Processing
visual sensor data in low-power wide area networks’ is a project funded by the
Fund for Scientific Research-Flanders (FWO-V) under grant agreement #G084177N.

LORAWAN SCALABILITY ANALYSIS 181

References
[1] P. Middleton, T. Tully, J. F. Hines, T. Koslowski, B. Tratz-Ryan, K. F. Brant,

E. Goodness, A. McIntyre, and A. Gupta. Forecast: Internet of Things -
Endpoints and Associated Services, Worldwide, 2015, 2015. Available from:
https://www.gartner.com/doc/3159717/forecast-internet-things--endpoints.

[2] U. Raza, P. Kulkarni, and M. Sooriyabandara. Low Power Wide Area Net-
works: An Overview. arXiv:1606.07360v2 [cs.NI], 2017. Available from:
http://arxiv.org/abs/1606.07360.

[3] Cisco. Cisco visual networking index: Global mobile data traffic fore-
cast update 2015-2020. Technical report, Cisco, 2016. Available
from: https://www.cisco.com/c/dam/m/en{ }in/innovation/enterprise/assets/
mobile-white-paper-c11-520862.pdf.

[4] Nokia White Paper. LTE evolution for IoT connectivity. Technical re-
port, Nokia, 2016. Available from: http://resources.alcatel-lucent.com/{%}
0Aasset/200178.

[5] L. Alliance. LoRaWAN Specification. LoRa Alliance, 2015.

[6] Proximus NV. LoRa network coverage map (January 2017). Available from:
https://www.proximus.be/resources/iportal/ecr/maps/coverage-en.html{#}
lora.

[7] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena. Network
simulations with the ns-3 simulator. SIGCOMM demonstration, 14(14):527,
2008.

[8] M. M. S. Kowsar and S. Biswas. Performance improvement of IEEE 802.11n
WLANs via frame aggregation in NS-3. In 2017 International Conference
on Electrical, Computer and Communication Engineering (ECCE), pages
1–6. IEEE, feb 2017. Available from: http://ieeexplore.ieee.org/document/
7913039/, doi:10.1109/ECACE.2017.7913039.

[9] L. Tian, S. Deronne, S. Latré, and J. Famaey. Implementation and Valida-
tion of an IEEE 802.11ah Module for ns-3. In Proceedings of the Work-
shop on ns-3 - WNS3 ’16, pages 49–56, New York, New York, USA, 2016.
ACM Press. Available from: http://dl.acm.org/citation.cfm?doid=2915371.
2915372, doi:10.1145/2915371.2915372.

[10] O. B. A. Seller and N. Sornin. Low power long range transmitter, 2014.
Available from: https://www.google.com/patents/EP2763321A1?cl=fi.

[11] M. Knight and B. Seeber. Decoding LoRa: Realizing a Modern LPWAN with
SDR. Proceedings of the GNU Radio Conference, 1(1), 2016. Available
from: http://pubs.gnuradio.org/index.php/grcon/article/view/8.

https://www.gartner.com/doc/3159717/forecast-internet-things--endpoints
http://arxiv.org/abs/1606.07360
https://www.cisco.com/c/dam/m/en{_}in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf
https://www.cisco.com/c/dam/m/en{_}in/innovation/enterprise/assets/mobile-white-paper-c11-520862.pdf
http://resources.alcatel-lucent.com/{%}0Aasset/200178
http://resources.alcatel-lucent.com/{%}0Aasset/200178
https://www.proximus.be/resources/iportal/ecr/maps/coverage-en.html{#}lora
https://www.proximus.be/resources/iportal/ecr/maps/coverage-en.html{#}lora
http://ieeexplore.ieee.org/document/7913039/
http://ieeexplore.ieee.org/document/7913039/
http://dl.acm.org/citation.cfm?doid=2915371.2915372
http://dl.acm.org/citation.cfm?doid=2915371.2915372
https://www.google.com/patents/EP2763321A1?cl=fi
http://pubs.gnuradio.org/index.php/grcon/article/view/8

182 CHAPTER 6

[12] P. Robyns, E. Marin, W. Lamotte, P. Quax, D. Singelée, and B. Preneel.
Physical-Layer Fingerprinting of LoRa devices using Supervised and Zero-
Shot Learning. In Proceedings of the 10th ACM Conference on Security
& Privacy in Wireless and Mobile Networks, Boston, MA, USA, 2017.
doi:10.1145/3098243.3098267.

[13] N. Baldo and M. Miozzo. Spectrum-aware Channel and PHY layer mod-
eling for ns3. In Proceedings of the 4th International ICST Conference
on Performance Evaluation Methodologies and Tools, page 2. ICST, 2009.
Available from: http://eudl.eu/doi/10.4108/ICST.VALUETOOLS2009.7647,
doi:10.4108/ICST.VALUETOOLS2009.7647.

[14] M. Lacage and T. R. Henderson. Yet another network simulator. In
Proceeding from the 2006 workshop on ns-2: the IP network simulator
- WNS2 ’06, page 12, New York, New York, USA, 2006. ACM Press.
Available from: http://portal.acm.org/citation.cfm?doid=1190455.1190467,
doi:10.1145/1190455.1190467.

[15] G. Piro, N. Baldo, and M. Miozzo. An LTE module for the ns-3 network sim-
ulator. In Proceedings of the 4th International ICST Conference on Simula-
tion Tools and Techniques, page 527. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2011. Available
from: https://dl.acm.org/citation.cfm?id=2151129.

[16] T. Henderson. Low-Rate Wireless Personal Area Network (LR-WPAN) -
Model Library ns-3, 2011. Available from: https://www.nsnam.org/docs/
models/html/lr-wpan.html.

[17] K. Mikhaylov, J. Petaejaejaervi, and T. Haenninen. Analysis of Capacity
and Scalability of the LoRa Low Power Wide Area Network Technology. In
European Wireless 2016; 22th European Wireless Conference, pages 1–6,
2016.

[18] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso. Do LoRa Low-Power
Wide-Area Networks Scale? In Proceedings of the 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pages 59–67, 2016. Available from: http://doi.acm.org/10.1145/
2988287.2989163, doi:10.1145/2988287.2989163.

[19] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley. A Study of LoRa: Long
Range & Low Power Networks for the Internet of Things. Sensors, 16(9),
2016.

[20] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia, and
T. Watteyne. Understanding the limits of LoRaWAN. IEEE Communications
Magazine, pages 8–12, 2016. arXiv:arXiv:1607.08011v1.

http://eudl.eu/doi/10.4108/ICST.VALUETOOLS2009.7647
http://portal.acm.org/citation.cfm?doid=1190455.1190467
https://dl.acm.org/citation.cfm?id=2151129
https://www.nsnam.org/docs/models/html/lr-wpan.html
https://www.nsnam.org/docs/models/html/lr-wpan.html
http://doi.acm.org/10.1145/2988287.2989163
http://doi.acm.org/10.1145/2988287.2989163

LORAWAN SCALABILITY ANALYSIS 183

[21] O. Georgiou and U. Raza. Low Power Wide Area Network Analysis: Can
LoRa Scale? IEEE Wireless Communications Letters, 2017.

[22] B. Reynders, W. Meert, and S. Pollin. Range and coexistence analysis of
long range unlicensed communication. In 2016 23rd International Con-
ference on Telecommunications (ICT), pages 1–6, Thessaloniki, Greece,
2016. IEEE. Available from: http://ieeexplore.ieee.org/document/7500415/,
doi:10.1109/ICT.2016.7500415.

[23] A.-I. Pop, U. Raza, P. Kulkarni, and M. Sooriyabandara. Does Bidirectional
Traffic Do More Harm Than Good in LoRaWAN Based LPWA Networks?
arXiv:1704.04174v1 [cs.NI], 2017. Available from: https://arxiv.org/pdf/
1704.04174.pdf, arXiv:1704.04174.

[24] D. Magrin, M. Centenaro, and L. Vangelista. Performance Evaluation of
LoRa Networks in a Smart City Scenario. In 2017 IEEE International Con-
ference on Communications (ICC), Paris, 2017. IEEE.

http://ieeexplore.ieee.org/document/7500415/
https://arxiv.org/pdf/1704.04174.pdf
https://arxiv.org/pdf/1704.04174.pdf

7
Conclusions and perspectives

When asked about his prediction for the future of the web, Eric Schmidt replied the
following: “I will answer very simply that the Internet will disappear. There will
be so many IP addresses, so many devices, sensors, things that you are wearing,
things that you are interacting with that you wont even sense it. It will be part
of your presence all the time. Imagine you walk into a room, and the room is
dynamic. And with your permission and all of that, you are interacting with the
things going on in the room.”

– Eric Emerson Schmidt (1955 -)

The words of Eric Schmidt allude to the ubiquity of Internet technology in
our lives and how the Internet of Things (IoT) will lead to an immense growth
in pervasive computing. This omnipresence of computing, sensing, communi-
cation, etc. is a common theme among the many visions that exist of the IoT.
Computing is gearing up for this pervasive future by the ever decreasing cost of
embedded systems, the continuing miniaturization and integration of Integrated
Circuits (ICs) and the increasing complexity of embedded software. The same ap-
plies to connectivity, with novel network technologies such as Low Power Wide
Area Networks (LPWANs) and low-power cellular networks hitting the market.
Industry has not been dormant either, as innovation drives products to be Internet-
connected which has led to many (new) tech suppliers offering IoT solutions to
small and large business.

Another interesting quote about the future of the IoT comes from Bob Harden,
a senior IT consultant, and states: “purchasing 10-20 different services from 10-20
different vendors using 10-20 different apps with 10-20 different user interfaces.
If thats the way IoT goes, it will be a long tough slog to Nirvana”. Harden warns

186 CHAPTER 7

about what is sometimes referred to as the ‘Intranet of Things’, where things only
talk to other things of the same vendor and ignore other systems in their surround-
ings. Such an approach is problematic, as in the broad scope of the IoT many prod-
ucts from different vendors will co-exist and failure to interoperate will severely
restrict the abilities of IoT systems as functions, data, networks, etc. would not be
shareable between different systems. For many recently released IoT products, this
‘Intranet of Things’ is exactly what has happened with the proliferation of vertical
stacks of integrated products. All of the (big) tech companies have tried to gain
a competitive advantage by developing their individual and proprietary operating
systems, equipment and protocols. As a result, an IoT product is part of a closed
ecosystem and every user is limited to the walled garden of their chosen vendor.
Unfortunately, this fragmentation in IoT is likely to continue to exist for a while.

Nevertheless, open technology - in the form of open protocols, data formats,
open source software and open frameworks - is gaining popularity among more
and more companies and developers. AllSeen, initially launched by Qualcomm
and now developed by the AllSeen alliance, is an example of an open source soft-
ware framework that makes it easy for devices and apps to discover and commu-
nicate with each other. Similarly, Ikea has recently launched a smart lighting solu-
tion, Trådfri, which builds on open standards (DTLS, CoAP and OMA LWM2M
specifically) for implementing device management and interactions.

This dissertation is situated against the backdrop of moving from closed and
proprietary IoT systems to open and interoperable IoT systems. As such the main
goal of this work has been to remove barriers in the adoption of open standards in
Constrained RESTful Environments (CoRE), which is the subset of the IoT that fo-
cuses on resource-constrained devices employing the Representational state trans-
fer (REST) paradigm. In this subset, diverse things host RESTful web services
with open data formats which dramatically improves integration and interoper-
ability, which is why this is sometimes referred to as the Web of Things (WoT).
This PhD has approached these adoption barriers from a number of different an-
gles. Firstly, we have studied issues related to efficient resource usage in an open
WoT as one has to be mindful of the impact of deploying open standards on the
limited availability of resources in constrained devices and networks. Usability
of CoRE for end users and software developers is a second important topic ad-
dressed in this dissertation, where the lack of (user) interfaces, security primitives
and functionality are important barriers to adoption. Heterogeneity in connectivity
technologies, communication models and patterns in resource-constrained systems
built on open standards is the third subject handled in this dissertation. Finally, as
open standards gain traction in new constrained networks, namely LPWANs, de-
signed for massive IoT deployments, it is interesting to study the scalability and
reliability of these LPWANs. The efforts lead by the IETF IPv6 over Low Power
Wide-Area Networks (lpwan) working group to bring open standards to these types
of networks, indicate that in the future LPWANs will be part of the open WoT and
as such will face issues similar to the ones studied here. The remainder of this
chapter summarizes the most important work and the main conclusions of this
PhD research. It is closed with potential directions for future work.

CONCLUSION 187

7.1 Summary and conclusions

Throughout this dissertation we have applied the concept of Distributed Intelli-
gence (DI) to overcome adoption barriers of open standards in CoRE. DI recog-
nizes that processing and communication are pervasive and that they may reside
anywhere on the Internet. By deploying functionality on distributed systems ef-
fectively, we may attain an intelligence of sorts that is spread over multiple com-
puting systems (hence the term). In the context of an open, resource-constrained
WoT, resource-constrained devices and networks are limited in the functionality
they can implement and offer. Therefor, DI is an effective concept as it helps
to overcome the limitations of these resource-constrained systems by relying on
more capable systems distributed over the Internet. As such, this dissertation has
applied DI to address limitations specifically related to deploying and using open
standards in CoRE. Specifically, this dissertation has applied Sensor Function Vir-
tualization (SFV), a technique where constrained devices are extended with new
functionality through device virtualization, to overcome these limitations.

The Secure Service Proxy (SSP) presented in chapter 3, applies device virtual-
ization as a means towards realizing DI. Virtualizing resource-constrained devices
on more capable systems allows the SSP to extend devices with new function-
ality and capabilities. While this dissertation has focused device virtualization
on improving the performance, scalability, usability and security of CoRE, the
concept of device virtualization may be applied to other problems as well. A
modular system, named adapters, has been presented that implements such per-
formance, scalability or usability enhancing functionality. Adapters process CoAP
requests and generate CoAP responses, thereby supporting any functionality to
be deployed on virtual devices. This dissertation has designed and implemented
adapters for offering virtual resources, enforcing congestion control policies, filter-
ing CoAP requests according to Access Control Lists (ACLs), caching responses,
rewriting discovery responses and proxying requests as a reverse proxy or a CoAP
mirror server. Additionally, the presented work has applied device virtualization
for improving security in CoRE. As virtual devices are deployed on more capa-
ble systems, they can support strong security primitives unattainable in resource-
constrained systems. Specifically, virtual devices are able to offer Public Key
Infrastructure (PKI) cipher suites which provide stronger and more scalable au-
thentication when compared to Pre-Shared Key (PSK) or Raw Public Key (RPK)
cipher suites. By additionally employing a long-lived secure session between the
virtual device and the constrained device, some of the overhead issues with session
initialization in conventional Datagram Transport Layer Security (DTLS) are cir-
cumvented. Evaluation shows that the SSP reduces the load on constrained devices
by response caching and avoiding unnecessary traffic in the constrained network.
Additionally, it also improves response times in constrained networks by employ-
ing long-lived security sessions. Finally, the concept of device virtualization has
also been applied to LoRa Wide Area Networks (LoRaWANs) in appendix A. It
shows that the reverse proxy approach can hide LoRaWAN-specific integration
APIs and offer standard-based interfaces for data access and control of LoRaWAN

188 CHAPTER 7

end devices. This may aid in the integration of LoRaWAN networks in the WoT.
This thesis has also applied the concept of SFV to improving user interactions

with constrained devices. As end users will be confronted with many, different
constrained devices in their environment, it is, as mentioned by Bob Harden, un-
feasible to use one mobile app per end device. Instead, users expect intuitive and
uniform ways to interact with devices. As web technology is widely supported,
this work proposes a web template based system for rendering Graphical User
Interfaces (GUIs). In this approach users are offered rich, responsive web pages
that render representations of RESTful resource and that enable users to update
RESTful resources. The GUI system was demonstrated for rendering discovery
responses, where web links were rendered in a table, for temperature reading, ren-
dered in a time series graph, and for controlling a light switch, rendering as a
button. As web templates allow scripting, they can also do more than just ren-
der static information. One demonstrated example was the use of non-blocking
response retrieval via asynchronous javascript (ajax) in order to speed up the tem-
plate rendering.

In the context of heterogeneous IoT technologies, a cloud platform for inte-
grating heterogeneous devices and communication models has been proposed in
chapter 5 of this dissertation. The viewpoint of service developers wanting to com-
bine diverse IoT technologies is adopted. To achieve this integration, the design
of the platform is split into two layers: an abstraction and an access layer. The
abstraction layer offers a uniform interface for interacting with the heterogeneous
devices on the platform, as such this layer abstracts the heterogeneity for service
developers. The access layer integrates with technology-specific interfaces and
data models, this is where the mapping is made between a specific technology and
the device abstraction of the platform. Three testing scenarios evaluated different
aspects of the cloud platform. One scenario shows how two different commu-
nication models (push and pull) are abstracted by the platform. In another sce-
nario, four different IoT products, employing different connectivity technologies
and protocols, are abstracted by the platform. The evaluation further shows that it
is relatively straightforward to build a control and management dashboard on top
of the proposed platform using conventional web technology that is well-known to
service integrators.

The final topic addressed in this doctoral thesis is the scalability of emerg-
ing LPWANs. A comprehensive model of LoRaWAN networks was built in ns-
3, a network simulator, supporting class A end devices sending (un)confirmed
upstream messages to a network server and vice versa. In the LoRa physical
layer model, interference is modeled as noise by applying the well-known signal-
to-interference-plus-noise ratio (SINR) modeling technique. To this end, an er-
ror model was constructed from baseband bit error rate simulations for different
signal-to-noise ratios (SNR) and modulation settings of the LoRa signal. Exten-
sive simulations have uncovered that the radio duty cycle restrictions of gateways
are detrimental to the delivery ratio of confirmed messages, due to the inability to
send timely downstream acknowledgments. The lack of acknowledgments leads
to end devices, which assume that the transmission was not received correctly,

CONCLUSION 189

unnecessarily retransmitting messages which leads to an increase in congestion
and wasting energy. While increasing the gateway density does show a significant
increase in packet delivery ratios of confirmed messages, it can not compensate
completely for the stringent duty cycle restrictions of gateways.

To conclude, this dissertation has presented several methods for improving the
integration of resource-constrained devices into applications and services. The
research focused on the topics of efficiency, usability and scalablity of resource-
constrained environments. The dissertation can be approached as a cooking book
with extensive recipes to address operational concerns of Constrained RESTful
Environments. Specifically, the distributed intelligence concept and the device
virtualization approach are the two cornerstones of this work. This dissertation
describes and shows the value they can add in (secure) CoRE by filtering (un-
wanted) traffic, combining resource requests, adding virtual resources and other
functionality, improving authentication and reducing resource usage. In doing so,
this PhD has made a modest but significant contribution to the goal of an open,
secure WoT, where many, heterogeneous (resource-constrained) devices co-exist
and interoperate.

7.2 Outlook
The fragmented state of today’s IoT market is threatening its exponential growth
and limiting innovation. This situation is comparable with the early days of the In-
ternet, where many non-interoperable networking technologies competed for mar-
ket share. In order to address this fragmentation, IoT vendors ought to adopt open
technology that target interoperability. In the near future, the World Wide Web
Consortium (W3C) will continue to standardize web technology for things in its
WoT working group. It is hoped that the role of open web standards in the devel-
opment of the IoT will be similar to that of web technology in the development of
the widely used World Wide Web (WWW). On the networking side, the 6lo IETF
working group will continue the adoption of Internet Protocol version six (IPv6)
in new link layer technologies (e.g. RFCs on IPv6 over Bluetooth Low Energy and
DECT have been released already). On the protocol side, the healthy and active
state of the CoRE IETF working group is a testament of the global interest in work-
ing on a RESTful architecture for resource-constrained devices and networks. The
future will tell whether all these different initiatives can break the fragmentation
of the IoT and lead to an open WoT.

Apart from the promising future of the WoT, we also expect the concept of
distributed intelligence to gain importance. Already today, a lot of research is
ongoing on the role of cloud computing and fog computing in the IoT.

One example is the growing interest in increasing the flexibility of constrained
devices, which is apparent from adopted IETF drafts that describe resource link-
ing and observe parameters. Both mechanisms provide novel ways for shaping
direct, RESTful interactions between clients and servers. Similarly, the WoT W3C
working group is looking into scripting APIs for use on Things. Such a standard-

190 CHAPTER 7

ized API means that Things could be extended, at run time, with new functionality
which has parallels to the adapter approach for extending virtual devices presented
in this dissertation. Next to scripting, there is also ongoing research on the efficient
(partial) reprogramming of resource-constrained devices.

Network intelligence may be considered as another form of distributed intel-
ligence and is also on the rise in recent years. One example is the move from
random access networks to networks with deterministic access for certain IoT use
cases. The time-slotted channel hopping mode of IEEE 802.15.4e is a popular ex-
ample that has been around for many years. Despite its age, efforts to bring IPv6
to TSCH have only begun recently at the IETF with the formation of the 6tisch
working group in 2014. Nevertheless, the work at 6tisch is promising as it brings
standards-based solutions for organizing channel access in 802.15.4e networks
in a sector that has historically been dominated by closed standards such Wire-
lessHART and ISA100.11a. The novel IEEE 802.11ah (HaLow) Wi-Fi standard
introduces another example of network intelligence with the concept of ’Restricted
Window Access’ (RAW) for structuring wireless medium access. By grouping sta-
tions, limiting contention to the stations in a group and limiting medium access to
one group at a time, RAW decreases the collision probability due to congestion
and increases the maximum throughput in dense networks. For both these tech-
nologies, it is necessary to build strategies that use the mechanisms provided by
the standards for structuring medium access to the requirements of a specific de-
ployment. Research is undergoing on how such strategies might look like and
how the requirements of dynamic networks can be learned. An interesting enabler
for network intelligence is the development of RESTful interfaces for managing
constrained devices and networks at the IETF. This effort, CoAP Management
Interface (CoMi), by the CoRE WG defines network access to management infor-
mation embedded in YANG data models through CoAP resources. It should help
to manage resource-constrained devices and networks (where traditional manage-
ment protocols are unsuited) by retrieving operational information about the net-
work which may be used as input to network intelligence methods.

Finally, in the world of Low Power Wide Area Networks (LPWANs) the move
to IPv6 is also underway with the standardization of compression and fragmenta-
tion techniques in the IETF lpwan working group. This evolution could lead to
LPWANs joining the WoT paradigm as standardized by the W3C, thereby greatly
increasing their potential for integration. This also means that many of the exist-
ing research into the resource-constrained WoT could be applied to the LPWAN
world, with the caveat of the very low throughput and datagram sizes and high
delays common in LPWANs. A second interesting topic is replacing ALOHA
with alternatives that structure medium access in order to improve the scalabil-
ity of LPWANs. Promosing alternatives Another interesting evolution pertains
to the medium access of LoRaWAN gateways. Recently, there have been tests
with hardware-assisted ’Listen Before Talk’ (LBT) medium access on gateways.
If LoRaWAN gateways implement LBT, then this could drastically increase the
downstream capacity of LoRaWANs and thereby mitigate some of scalability is-
sues raised in this dissertation. Multimodal wireless communication is another

CONCLUSION 191

promising trend for LPWAN devices. Such devices combine multiple wireless
connectivity technologies in order to get the best of multiple worlds, e.g. they
may benefit from the high range offered by LPWANs and switch to high data rate
communication at specific locations in order to perform fireware updates or other
high throughput tasks. The concepts presented in this dissertation (e.g. device
virtualization) may be applied to hide which communication technology a device
is using and to offer seamless network access to a device regardless of its active
connectivity technology.

A
Integrating LoRaWAN networks into

the Web of Things via device
virtualization

This appendix presents unpublished work on integrating LoRaWAN end devices
into the Web of Things (WoT) via device virtualization. It can be considered as an
extension to Chapter 5, with LoRa Wide Area Network (LoRaWAN) as an example
of network heterogeneity.

? ? ?

A.1 Introduction
One issue with the LoRaWAN specification is the sharing of data in a distributed
system. Messages from LoRaWAN end devices are received by gateways, which
forward all messages to the LoRaWAN Network Server (NS). At the NS mes-
sages are deduplicated, acknowledged (if necessary) and decrypted. However, the
LoRaWAN standard does not specify how data at the NS should be shared outside
of the LoRaWAN infrastructure. It also does not specify how the NS should ac-
cept traffic that is to be sent downstream towards end devices. One popular option
in existing LoRaWAN networks is a message brokers where messages from end
devices are published and downstream messages may be queued. Troublesome
issues with this approach include that it is difficult to discover the available end
devices and that every deployment has its own variation on the message broker
pattern.

194 APPENDIX A

Instead, we propose to employ open standards to facilitate this sharing of data
in a web service oriented architecture. One benefit of open standards is the wide
availability of interoperable software that can interact with open standard-based
interfaces. Additionally, open standards typically follow a certain philosophy (or
method) for designing interfaces. This means that the resulting interface is familiar
to those experienced with the standard (e.g. RESTful philosophy). Finally, open
standards also free us from re-inventing the wheel, allowing us to focus on the
integration.

Our approach follows the RESTful paradigm as applied in popular web tech-
nology nowadays. It dictates a clear compartmentalization of functionality into
multiple services. We have chosen the Constrained Application Protocol (CoAP)
as it is popular in resource-constrained environments for developing RESTful web
services. Benefits of CoAP include that it is highly usable in resource-constrained
environments and that many requirements of M2M communication have been
taken into account during the design phase of the protocol. Additionally, CoAP
was also designed to support easy discovery of services and to interface easily
with HTTP.

A.2 RESTful Web services for data sharing and con-
trol of LoRaWAN end devices

Network
Server

Devices

GW

GW

GW

APP 1

….

APP N

LoRaWAN IPv6/CoAP

RD

Reverse
CoAP proxies

coap

coap

coap

Figure A.1: LoRaWAN end devices are abstracted as virtual CoAP servers to facilitate
data exchange and control in the WoT

Figure 1 presents our approach for sharing upstream messages and accepting
downstream messages between LoRaWAN end devices (on the left) and applica-
tions external to the LoRaWAN infrastructure (on the right). The approach hosts
a CoAP server on behalf of every LoRaWAN end device in the network, which is
known as a reverse proxy approach. Upstream application data from an end de-
vice is offered as a CoAP resource on the reverse proxy corresponding to the end
device. One CoAP resource is hosted per LoRaWAN FPort in use. This enables
parties with interest in the upstream data to observe the upstream resource on the
CoAP proxy and retrieve upstream messages. Similarly, the reverse proxy hosts a
CoAP resource that accepts downstream messages for the end device in question.

DEVICE VIRTUALIZATION FOR LORAWAN NETWORKS 195

Once the LoRaWAN end device opens a receive window, the value of this resource
is retrieved and sent to the end device as a LoRaWAN frame payload.

The reverse proxy is responsible for the communication with the the Network
Server and as such is dependent on the LoRaWAN deployment. In our case, we
used the ‘The Thing Networks’ LoRaWAN network which hosts a message broker
as its main interface. On this message broker there are different message topics
for upstream and downstream traffic per end device. The reverse proxy subscribes
for upstream messages at a topic exchange. When a LoRaWAN message is re-
ceived at the network server, it is published to the upstream topic corresponding
to the end device. The reverse proxy receives the message and updates the CoAP
upstream resource of the CoAP server corresponding to the end device. For down-
stream traffic, the reverse proxy publishes CoAP resource representations on the
downstream topic corresponding to the end device. This enables the NS to send
the message once a receive window is opened by the end device.

The integration also hosts a ‘Resource Directory’ to facilitate discovery of the
available CoAP reverse proxies (i.e. LoRaWAN end devices) and their resources.
The integration also offers an HTTP/CoAP cross protocol proxy to enable HTTP
access to the CoAP resources.

A.3 Binary data encoding over LoRaWAN
One issue with the approach presented above is the limited usability of upstream
and downstream messages. Typically, these messages combine multiple data sources
in a binary encoding in order to increase the efficiency of communication (i.e. send
more information in shorter chunks of data). While highly efficient data formats
with minimal data size are important in the LoRaWAN network, they are not so
important on the CoAP reverse proxy where network resources with third parties
are much less limited than in LoRaWAN networks. In fact, when sharing data
it can be cumbersome for third parties to interpret the binary encoding used by
LoRaWAN end devices.

There are multiple approaches to tackle this issue. One approach defines
a mapping between a binary encoding and CoAP resources for every type of
LoRaWAN application message. Depending on the type of binary encoding, this
mapping may be described in a domain specific language or syntax or it may be
implemented as part of the CoAP proxy for binary encodings that cannot be for-
malized. Examples notations that define binary encoded messages include ASN.1
and protocol buffers. These mappings are used to deconstruct binary messages into
their data fields. When an upstream message arrives at the reverse proxy, it can be
deconstructed into its individual fields (using the mapping) and the proxy may of-
fer one CoAP resource for every field in the message. Note that a similar approach
can be applied for downstream traffic, where multiple CoAP resources are com-
bined as data fields of one binary message. In this case, it is also the mapping that
defines which fields (i.e. resources) will make up the downstream message. As a
result, external systems are freed from (de)combining multiple data fields from or

196 APPENDIX A

into one message.
In our approach we chose to use Google’s protocol buffers for the binary map-

ping as it generates compact binary messages (important in the LoRaWAN net-
work), while supporting verbose message structures. Additionally, there exists
a lightweight protobuf implementation 1 with a small memory foot print that is
suited for use on resource-constrained LoRaWAN end devices. The CoAP reverse
proxy can use the protocolbuf library as made available by Google Inc.

A.3.1 Proof of concept demonstration
In order to demonstrate our approach, we have setup a small proof of concept
with an IMST iM-880A-L LoRaWAN demo board, a gateway, network server and
the CoAP++ framework. The nanopb software processes the message definition
(the so-called proto file) and outputs two files that contain the struct definition and
default initializer of the message. The embedded program uses these two files,
as well as the nanopb runtime library to serialize a message struct to its binary
message and deserialize a binary message in its message struct.

An example is presented below for the APIPort3 message, which is a LoRaWAN
message type offered by the LoRaWANMac SDK. On the left the protobuf mes-
sage definition of the APIPort3 message is shown, while the struct definition pro-
duced by nanopb for the APIPort3 message definition is shown on the right. In
this case the APIPort3 message contains information on the periperhals available
on the demo board: is the LED turned on, what is state of the potentiometer and
what is the voltage measured at the power source?

message APIPort3 {
required uint32 AppLedStateOn = 1;
required uint32 PotiPercentage = 2;
required uint32 VDD = 3;

}

/* Struct definitions */
typedef struct _APIPort3 {

uint32_t AppLedStateOn;
uint32_t PotiPercentage;
uint32_t VDD;

} APIPort3;

The listing below shows the protobuf encoding of the integer values of the
APIPort3 fields on the left. They are encoded as so-called variable integers (var

ints), where shorter bytes sequences are assigned to small integers. On the right,
the serialized APIPort3 message is displayed for the value of the data fields on
the left. The underlined bytes are the headers added by protobuf to encode the
type, the field number and length (if using variable length types) of the field in the
message. In this case three additional bytes are added to transport the meta data of
the message.

0x00
0x64
0xF5 0x2D

0x08 0x00 0x10 0x64 0x18 0xF5 0x2D

On the CoAP reverse proxy a protocol buffers module was added, based on
the protobuf library. The protobuf module accepts a proto message definition and

1nanopb: https://github.com/nanopb

https://github.com/nanopb

DEVICE VIRTUALIZATION FOR LORAWAN NETWORKS 197

a URI to the upstream resource hosted on the reverse proxy. The module uses
protobuf reflection (using the message definition) to parse protobuf messages at
run time into their fields. For every known field, the protobuf module will create a
corresponding CoAP resource on the reverse proxy of the LoRaWAN end device
(at the moment the name of the resource is set to the field name). When an up-
stream message is received from the LoRaWAN backend at the reverse proxy, it is
deserialized into its fields and these fields are used to update the resources on the
reverse proxy. The result for the APIPport3 example is shown below:

coap://lwdevice1.test/AppLedStateOn -> AppLedStateOn: 0
coap://lwdevice1.test/PotiPercentage -> PotiPercentage: 100
coap://lwdevice1.test/VDD -> VDD: 5877

A.4 Conclusion
This appendix illustrated how device virtualization can be applied to share data
coming from LoRaWAN end devices and to send data towards end devices. The
CoAP reverse proxy hides the details of the API offered by the LoRaWAN back-
end from third-party developers, thereby aiding in integration of LoRaWAN de-
vices. Compared to the efforts at the IETF of bringing IPv6 into the LoRaWAN,
the proposed method can be considered as an alternative for when the compression
mechanisms cannot be implemented (e.g. updating end devices in existing deploy-
ments is unfeasible) or for when the overhead after compression of IPv6 remains
too large. For external systems there is no difference between the end-to-end IPv6
and reverse proxy cases, as they see a CoAP server in both cases.

While the protocol buffers encoding is not the most efficient in terms of size
(e.g. the AppLedStateOn is a flag that is encoded into 2 bytes in the message),
it does strike a good balance between compactness and usability. The protobuf
language allows formalizing many different types of messages. Additionally, im-
plementations of the protobuf encoding are available on a wide range of platforms.
The proof of concept proved that – due to a compact implementation – proto-
col buffers are also suitable for the type of embedded devices that are used in
LoRaWAN networks (the iM-880A-L contains an ultra-low-power STM32L151,
with 128KB flash memory and 16KiB RAM memory).

	Front cover
	Title page
	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Background
	Internet of Things
	The resource-constrained Internet of Things
	TCP/IP for the resource-constrained Internet of Things
	Web of Things
	Internet standards for web technology in constrained devices and networks
	IPv6 over Low Power Wireless Personal Area Networks
	The Constrained Application Protocol

	Low Power Wide Area Networks

	Research challenges
	Efficient resource utilization in an open Web of Things
	Holistic security in an open Web of Things
	Heterogeneity in the resource-constrained Internet of Things
	Usability of constrained devices
	Scalability of emerging LPWA technologies

	Outline
	Research contributions
	Publications
	Publications in international journals (SCI)
	Publications in other international journals
	Publications in international conferences (SCI)
	Publications in other international conferences
	Contributions to standardization bodies
	Patent applications

	References

	Sensor function virtualization to support distributed intelligence in the Internet of Things
	Introduction
	The need for distributed intelligence
	Generic IoT system
	Open challenges
	Act in time
	Work offline
	Serve many
	Move and sleep
	Monoglot

	Distributed intelligence

	Sensor Function Virtualization for the Internet of Things
	IETF protocol stack for the Internet of Things
	SFV in the unconstrained domain
	SFV in the constrained domain
	Related work
	Conclusions
	References

	Secure Service Proxy: A CoAP(s) Intermediary for a Securer and Smarter Web of Things
	Introduction
	Overview of CoAP and DTLS
	The Constrained Application Protocol (CoAP)
	Datagram Transport Layer Security (DTLS)
	DTLS in constrained environments

	Problem statement and research goals
	End-to-end security in LLNs
	Complex application features in LLNs
	Problem statement: illustration in a smart building use case

	The Secure Service Proxy
	Motivation of approach
	Secure Service Proxy: design
	Secure Service Proxy: implementation
	Virtual devices and endpoints
	Implemented application layer adapters
	Adapter chain management: interface
	Authenticating (D)TLS clients on the SSP
	Key management between SSP and constrained devices

	Related work
	Evaluation: results and discussion
	Terminating end-to-end-security at the SSP
	Simulation setup
	Results

	Aggregating multiple CoAPs clients at the SSP
	Experiment setup
	Results

	Conclusions
	References

	Improving User Interactions with Constrained Devices in the Web of Things
	Introduction
	Problem statement and research goals
	User friendly interactions
	Requirements
	Approach
	Design
	Device mapping, discovery and naming

	Evaluation
	Evaluation setup
	Functional evaluation
	Interface responsiveness: load times

	Related work
	Conclusion
	References

	Integration of heterogeneous devices and communication models via the Cloud in the constrained Internet of Things
	Introduction
	Case study: logistics and transport
	Problem statement and research goals
	Background: Embedded web services via CoAP
	Cloud platform for supporting heterogeneous devices and communication models
	The access layer: providing access to heterogeneous devices and communication models
	The abstraction layer: a homogeneous RESTful interface for constrained devices
	Machine to Machine communications

	Evaluation
	Virtual device abstraction: scalability and latency
	Communication models: push vs pull
	Proof of concept: real world deployment

	Related work
	Conclusion
	References

	Scalability analysis of large-scale LoRaWAN networks in ns-3
	Introduction
	Background: LoRa, LoRaWAN and ns-3
	Problem statement and approach
	LoRaWAN ns-3 module
	LoRa PHY error model
	LoRa PHY baseband implementation
	LoRa PHY BER simulations

	LoRaWAN PHY layer
	LoRaWAN MAC layer
	LoRaWAN class A end device ns-3 application
	LoRaWAN gateway ns-3 application
	LoRaWAN Network server

	Scalability analysis of LoRaWAN networks
	Assigning LoRa spreading factors to end devices
	Unconfirmed vs confirmed upstream data
	Single gateway LoRaWAN network
	Multi gateway LoRaWAN networks

	Downstream data traffic

	Related work
	Discussion
	Conclusion
	References

	Conclusions and perspectives
	Summary and conclusions
	Outlook

	Integrating LoRaWAN networks into the Web of Things via device virtualization
	Introduction
	RESTful Web services for data sharing and control of LoRaWAN end devices
	Binary data encoding over LoRaWAN
	Proof of concept demonstration

	Conclusion

