

GHENT UNIVERSITY

IMPROVING EFFICIENCY, USABILITY AND SCALABILITY IN A SECURE, RESOURCE-CONSTRAINED WEB OF THINGS

Floris Van den Abeele

Promoters: prof. Jeroen Hoebeke, prof. Ingrid Moerman Examination board: Prof. D. De Zutter, prof. E. De Poorter, prof. S. Latré, prof. D. Hughes, prof. S. Van Hoecke, dr. M. Kovatsch

http://phd.vdna.be Download the digital dissertation

28/09/2017

INTERNET OF THINGS: HOME AUTOMATION

INTERNET OF THINGS: HOME AUTOMATION

Acquired by Google in 2014 for 3.2 billion USD

INTERNET OF THINGS: TRANSPORT

INTERNET OF THINGS: UTILITIES

Flanders starts the roll out of digital energy meters in 2019.

INTERNET OF THINGS: EHEALTH

INTERNET OF THINGS: EHEALTH

Real-time remote health monitoring

INTERNET OF THINGS

"The Internet of Things is the combination of sensors, actuators, distributed computing power, wireless communication on the hardware side and applications and big data/analytics on the software side." – Morgan Stanley

INTERNET OF THINGS

"The Internet of Things is the combination of sensors, actuators, distributed computing power, wireless communication on the hardware side and applications and big data/analytics on the software side." – Morgan Stanley

Internet of Things Landscape 2016

BREAKING THE VERTICAL SILOS IN IOT

NEED FOR STANDARDS ON TOP OF CONNECTIVITY SOLUTIONS

GHENT

WEB OF THINGS?

- "The Web of Things is a refinement of the Internet of Things by integrating smart things not only into the Internet, but into the Web Architecture."
- Designed for interoperability <-> Intranet of Things \bullet

Source: Building the Web of Things: book.webofthings.io Creative Commons Attribution 4.0

Improving Efficiency, Usability and Scalability in a Secure, Resource-Constrained Web of Things

CONSTRAINED DEVICES

Tiny, resource-constrained devices: networked embedded systems

CONSTRAINED DEVICES

Tiny, resource-constrained devices: networked embedded systems

Class 1 devices:

- ~100KB ROM
- ~10KB RAM

Low power, low cost

Battery lifetime: years

unec

RESOURCE-CONSTRAINED WEB OF THINGS

RESTful embedded web services:

Minimal memory footprint Compact encodings & headers Minimize communication

19

RESTful web services:

Memory footprint less important Plain-text encodings & headers Always-on communication

RESOURCE-CONSTRAINED WEB OF THINGS

RESTful embedded web services: Minimal memory footprint Compact encodings & headers Minimize communication New technologies 6lo/IPv6/UDP-DTLS/CoAP/CBOR Multi hop wireless networks, LPWANs **GHENT ID**Lab

UNIVERSITY

RESTful web services:

Memory footprint less important Plain-text encodings & headers Always-on communication

IPv6/TCP-TLS/HTTP/JSON

RESOURCE-CONSTRAINED WEB OF THINGS

Memory footprint less important Plain-text encodings & headers

RESOURCE-CONSTRAINED WEB OF THINGS: EXAMPLE

EMBEDDED WEB SERVER

Improving Efficiency, Usability and Scalability in a Secure, Resource-Constrained Web of Things

2. RESEARCH

RESEARCH CHALLENGES IN CORE

Efficient Resource Utilization

CHALLENGE I: EFFICIENT RESOURCE UTILIZATION

Resource efficient access control in an open WoT? Authentication? Public keys, certificates?

- Security handshake: verbose?
- Access control rules based on time, location, identity, resource?
- Expend limited resources on unauthorized requests?

26

RESEARCH CHALLENGES IN CORE

Usability

CHALLENGE II: USABILITY

User interactions with constrained WoT devices?

Binary response without any visualization.

How should data be rendered? What about actuators?

CHALLENGE II: USABILITY

User interactions with constrained WoT devices?

Binary response without any visualization.

How should data be rendered? What about actuators?

Limitations of constrained devices prohibit hosting a UI:

- Simple index page based on the popular bootstrap template: 44.6KB JS, 38.4 KB CSS and 6.5 KB HTML = **89.6KB of data**
- C1 devices have ~100KB ROM to fit the operating system and application
- Impact of additional communication.

RESEARCH CHALLENGES IN CORE

Heterogeneity

CHALLENGE III: HETEROGENEITY

- ۲
- ۲
- Data formats ۲

Cross-domain service providers have to interface with domain-specific: Connectivity options Standards and protocols Application models

RESEARCH GOALS

- New technologies for the constrained Web of Things BUT challenges remain:
 - Efficient resource utilization: open standards should not threaten the operation of CoRE: e.g. battery lifetime.
 - Usability: how to support user interactions in CoRE?
 - Heterogeneity: different application models, proprietary protocols

• Goal?

Remove technical barriers for adopting open web standards in the constrained WoT in order to accelerate adoption and maximize interoperability

• How?

<u>Distributed Intelligence and Sensor Function Virtualization</u> enable resourceful systems to extend constrained devices and solve these challenges.

gs BUT challenges remain: should not threaten the

RE? prietary protocols

THE DISTRIBUTED INTELLIGENCE CONCEPT

SENSOR (FUNCTION) VIRTUALIZATION

3. RESULTS: EFFICIENT RESOURCE UTILIZATION USABILITY HETEROGENEITY

SECURE SERVICE PROXY: DESIGN

RESOURCE EFFICIENT ACCESS CONTROL

RESOURCE EFFICIENT ACCESS CONTROL

RESOURCE EFFICIENT ACCESS CONTROL

LONG-LIVED DTLS SESSIONS REDUCE DELAY

INIVERSIT

Long-lived DTLS sessions cut the total transaction time (TTT) in half: median ~5000ms \rightarrow 2000ms

Comparable TTTs to plain-text reference

CoRE transaction: • Setup DTLS session (handshake) • Discover (GET .well-known/core) Close DTLS session (Finished)

LONG-LIVED DTLS SESSIONS SAVE ENERGY

Factor two reduction in median energy consumption.

Biggest energy savings stem from reduction in radio time.

E2E

Energy usage constrained device

umec

COMBINING OBSERVE SESSIONS SAVES ENERGY

Combine multiple CoAP observe sessions at the SSP

10% reduction in median energy consumption

COMBINING OBSERVE SESSIONS SAVES ENERGY

Combine multiple CoAP observe sessions at the SSP

- 10% reduction in median energy consumption
 - More than three simultaneous sessions.

3. RESULTS: EFFICIENT RESOURCE UTILIZATION USABILITY HETEROGENEITY

TEMPLATE-BASED UI RENDERING

Unaltered CoAP responses (e.g. binary encoding)

TEMPLATE-BASED UI RENDERING

Standard web technology:

- \rightarrow Web browser compatible
- \rightarrow Cross-platform support
- \rightarrow Rich Ul's :e.g. responsive design

WEB UI FOR RESOURCE DISCOVERY

z1rc2055.test/.well-known/core

•

3

Easy to use IoT

z1rc2055.test/.wellknown/core

	Web link	Title	Resource type	Content type	HTTP link
	/.well- known/core			40	http://z1rc2055.test/.well- known/core
	/deviceName		ibcn.dev.name		http://z1rc2055.test/deviceName
	/owner		ibcn.owner		http://z1rc2055.test/owner
	/d		ibcn.dev		http://z1rc2055.test/d
	/sensors/temp		ibcn.temp		http://z1rc2055.test/sensors/temp
	/actuators/fan		ibcn.fan		http://z1rc2055.test/actuators/fan
	/location		ibcn.location	0	http://z1rc2055.test/location
	/image		ibcn.image	1001	http://z1rc2055.test/image
	/dns		ibcn.dns	0	http://z1rc2055.test/dns

WEB UI FOR SENSING AND ACTUATING

GHENT

UNIVERSITY

|--|

UI LOAD TIMES

Non-blocking template (AJAX) load time is independent of CoAP response time

Guarantees UI responsiveness regardless of round trip time to constrained device

3. RESULTS: EFFICIENT RESOURCE UTILIZATION USABILITY HETEROGENEITY

CLOUD PLATFORM FOR INTEGRATING HETEROGENEOUS DEVICES

Heterogeneity considered:

- Different devices/OS: embedded linux, bare metal, contiki & tinyos
- Proprietary vs standards-based communication
- PUSH vs PULL communication model
- Sleepy vs (near) always-on devices

linux, bare metal, contiki & tinyos ommunication

CLOUD PLATFORM FOR INTEGRATING HETEROGENEOUS DEVICES

Virtual devices

devices

CLOUD PLATFORM FOR INTEGRATING HETEROGENEOUS DEVICES

DeviceManagers	~	Sensor Data	~	OneAccess	
IP-address: coap://[2001:6a8:1d80:600::3]:5683 Category: Trashcan Description: Trashcan 1					
Name		Туре		Description	
/battery		Text		Created via rest	
/lastrssi		Text		Created via rest	
/s/o		offset		Created via rest	
/s/t		txlev		Created via rest	
/s/u		update		Created via rest	
/s/w		/s/w		Created via rest	
/switch		Text		Created via rest	

IP-address: coap://[2001:6a8:1d80:600::4]:5683

Category: Trashcan

Description: Trashcan 2

Name	Туре
/battery	Text
/lastrssi	Text
/s/o	offset
/s/t	txlev
/s/u	update
/s/w	/s/w
/switch	Text

Data	Readable	Writable
View data	N/a	N/a
View data	N/a	N/a
View data	Read resource	Write to resource
View data	Read resource	Write to resource
View data	Read resource	Write to resource
View data	Read resource	Write to resource
View data	N/a	N/a

Description	Data
Created via rest	View data

4. THE INTERNET OF

4. THE INTERNET OF COWS!

MONITORING DAIRY CATTLE

Monitor:

- Temperature
- Activity: •
 - Position
 - Movement
 - Eating/drinking duration
- + Cow calendar

MONITORING DAIRY CATTLE

Monitor:

- Temperature
- Activity: •
 - Position
 - Movement -
 - Eating/drinking duration
- + Cow calendar

Detect?

- Heat
- Illness
- Lameness
- Calving moment

How's my cow? Where's my cow? What is my cow doing?

MONITORING DAIRY CATTLE

61

Wireless communication:

- Low power: long battery life
- Long range: big pastures
- Low data rates: telemetry
- Low cost: inexpensive system
- Scale: herds with 100s of animals

LPWANs:

Low Power Wide Area Networks

LOW POWER WIDE AREA NETWORKS (LPWAN)

Regulatory restrictions on air time: e.g. 0.1%, 1% or 10% Radio Duty Cycle time 0.36 3.6 36 seconds TX per hour

62

LPWAN features: Low power Low data rate Long range Scales (?) **Unlicensed spectrum**

THE WEB OF THINGS IS COMING TO LPWANS

The IETF is bringing the WoT to LPWANs, BUT: LPWANs focus on upstream traffic. <u>RDC limitations</u> as a new constraint

Are prior results applicable to LoRaWAN?

- - devices per gateway.

Request/response model of CoRE in LoRaWAN? Bidirectional traffic: up AND downstream messages Impact on scalability: hundreds, thousands of end

Existing studies did not consider downstream traffic.

LORAWAN SCALABILITY STUDY IN NS-3

Modeled LoRaWAN in ns-3 and studied impact of: Assigning data rates to end devices Unconfirmed vs confirmed messages Impact of more than one gateway

- -
- -

LORAWAN SCALABILITY STUDY IN NS-3

Modeled LoRaWAN in ns-3 and studied impact of: Assigning data rates to end devices Unconfirmed vs confirmed messages Impact of more than one gateway

Modeling the physical and MAC layer of LoRaWAN in ns-3:

IMPACT OF BIDIRECTIONAL TRAFFIC?

Packet Delivery Ratio for bidirectional traffic is significantly lower. Caused by Radio Duty Cycle limitations for gateways. Absence of acknowledgments leads to retransmissions which increases interference.

IMPACT OF BIDIRECTIONAL TRAFFIC?

PDR for bidirectional traffic is significantly lower. Caused by Radio Duty Cycle limitations for gateways. As gateway density grows, the impact of the RDC limitations is reduced and the PDR increases.

IMPACT OF BIDIRECTIONAL TRAFFIC?

PDR for bidirectional traffic is significantly lower. Caused by Radio Duty Cycle limitations for gateways. As gateway density grows, the impact of the RDC limitations is reduced and the PDR increases.

5. SUMMARY

SUMMARY

- The Internet will become ubiquitous.
 - *"The Internet will disappear"* E. Schmidt
 - "Software eats the world, as everything gets connected"
- The Internet of Things will be diverse and will need to interoperate.
- This dissertation researched how Distributed Intelligence and **Sensor Function Virtualization** can aid the integration of the resource-constrained Web of Things into applications and services.
- This work contributed towards the goal of an open and secure WoT, where many heterogeneous devices co-exist and interoperate.

Floris Van den Abeele PhD researcher

IDLAB

E floris.vandenabeele@ugent.be T +32 9 331 49 46

www.ugent.be www.vdna.be @florisvdain floris-van-den-abeele-0b22a743

